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THE MATHEMATICA POLICY RESEARCH VALUE-ADDED MODEL 

A. Introduction 

New Leaders for New Schools, a nonprofit organization committed to training school 
principals, heads the Effective Practices Incentive Community (EPIC), an initiative that offers 
financial awards to effective educators. New Leaders and its partner organizations have received 
from the U.S. Department of Education tens of millions of dollars in financial support for EPIC. 
Through this initiative, New Leaders offers financial awards to educators in two urban school 
districts and a consortium of charter schools. Awards are meant to serve as a reward for principals 
and instructional staff in schools that are effective in raising student achievement and as a financial 
incentive to document effective practices at award-winning schools. New Leaders publicizes its 
findings on effective practices online. 

New Leaders contracted with Mathematica Policy Research to help design the methods for 
identifying effective schools and teachers. The approach used for each partner differs, depending on 
the priorities of the partner and the type of information available to measure school and teacher 
performance. This report presents the method used to identify effective schools in the Memphis 
City Schools (MCS), one of the partner school districts, during the second year of this project. 
Mathematica will work with New Leaders and MCS to revise the model in future years and to 
incorporate additional data that become available. The results of this work were given to New 
Leaders but are not presented here so as to maintain the confidentiality of the individual schools.  

This year’s model differs from last year’s model in that we used a shrinkage estimator to help 
ensure that schools with small numbers of students in our model were not overrepresented at the 
top and bottom of the resulting performance measures. A shrinkage estimator is a statistical 
technique that “shrinks” the school effects toward the average, with greater shrinkage for schools 
whose results were less precisely estimated—typically smaller schools. More details on the shrinkage 
estimator can be found in the technical appendix. 

B. Method for Measuring School Effectiveness 

Many commonly used measures of school effectiveness, such as average test score levels or the 
percentage of students who meet state proficiency standards, do not provide an accurate measure of 
school effectiveness. This is because they are likely to be affected by students’ prior ability and 
accumulated achievement, as well as by current non-school factors, such as parents’ socioeconomic 
status. Better measures of school effectiveness focus on how much a school contributes to the test 
score improvements of its students. Mathematica follows this approach, basing its measures on 
student test score growth. 

This technique, called a “value-added model” (VAM), has been used by several prominent 
researchers (Meyer 1996; Sanders 2000; McCaffrey et al. 2004; Raudenbush 2004; Hanushek et al. 
2007). VAMs aim to measure students’ achievement growth from their own previous achievement 
levels. Many VAMs also control for student characteristics such as eligibility for free or reduced 
price lunch to account for factors that systematically affect the academic growth of different types of 
students. Thus, VAMs account for both the students’ starting point and the factors affecting their 
growth over the year. Because a value-added model accounts for initial student performance 
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differences across schools, it allows schools having low baseline scores to be identified as high 
performers and vice versa. 

A VAM provides a better measure of school effectiveness than relying on gains in the 
proportion of students achieving proficiency. Proficiency gains measure growth only for students 
who cross the proficiency cut-point, but VAMs incorporate achievement gains for all students, 
regardless of their baseline achievement levels. In addition, unlike school-wide proficiency rates, 
which are affected by changes in the composition of the student population, VAMs track individual 
students over time. (See Potamites and Chaplin [2008] for more details.) 

Ideally, VAMs estimate unbiased teacher and school effects. If students were randomly assigned 
to schools or classrooms and we had complete data on all students, our estimates would be 
unbiased. These conditions are unlikely. This means that our VAM estimates could be biased by 
unobserved factors that affect performance and are correlated with the schools or classrooms where 
a student is placed (Rothstein 2009). We control for prior test scores and observable characteristics 
in order to reduce the likelihood of such bias.1 Kane and Staiger (2008) offer some evidence 
suggesting that unobservable student characteristics based on student assignment do not play a large 
role in determining VAM scores. Using data from the Los Angeles Unified School District, they 
compared (1) the difference in value-added measures between pairs of teachers based on a typical 
situation in which principals assign students to teachers and (2) the difference in student 
achievement between the teachers the following year, in which they taught classrooms that were 
formed by principals but then randomly assigned to the teachers. Kane and Staiger found that the 
differences between teachers’ VAM scores before random assignment were a statistically significant 
and positive predictor of achievement differences when classrooms were assigned randomly. 
Because these results were gathered in schools in which the principal was willing to allow random 
assignment of classrooms to teachers, however, it is not clear if they generalize to other contexts. 

Key aspects of the Mathematica model are outlined here, along with a more detailed technical 
description, found in the appendix. 

1. Test Score Data  

Mathematica uses a VAM for Memphis to estimate the effect of schools on student 
performance in 2007–08, controlling for the prior performance of those students. MCS has 
provided test score data measuring student achievement over time, with Tennessee Comprehensive 
Achievement Program (TCAP) test scores available for grades three through eight in math, English 
language arts, science, and social studies, and Gateway exam scores available for high school 
students in algebra, English, and biology. The TCAP and Gateway exams are the high-stakes exams 
for Tennessee.  

The model treats high school students slightly differently from other students because of 
differences in the tests. The elementary and middle school TCAP tests in grades three through eight 
are given once a year to each student. In contrast, the high school Gateway exams are offered to 
students who have completed the corresponding course (algebra, English, or biology) and can be 
                                                 

1 Models are run both with and without other observable characteristics such as free and reduced price lunch 
status, English language learner status, special education status, gender, and ethnicity. 
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taken multiple times by students who fail on the first try. The model uses the Gateway exam scores 
for students who took an exam for the first time in spring of 2008. To control for prior student 
performance, the model links each Gateway exam to the student’s eighth grade TCAP exam in the 
corresponding subject (math, English language arts, or science). 

2. Test Score Standardization 

Because the Mathematica model includes test scores for multiple grades, subjects, and years, the 
scores must be standardized so they fit comparable scales. Mathematica transforms the test scores 
by subtracting from each student’s score the district-wide mean for that subject, grade, and year, and 
dividing by the district-wide standard deviation for these categories.2 This implies that the district 
average student test score in a given year equals zero, and that the average student test score 
“growth” from one year to the next also is set mechanically to zero.  

3. School Dosage 

The Mathematica model differs from a typical VAM by accounting for the time that students 
who change schools during the school year spend in each school. Students who spent time at more 
than one school in Memphis were seven percent of the analysis sample in 2007–08. Another six 
percent were at their school less than 90 percent of the time and were not in the district for the rest 
of the year. 3 Mathematica allocates credit to a school based on the fraction of time the student spent 
at each school, which can be thought of as the school “dosage.” Therefore, the model includes both 
students who attend multiple schools in a single year and students who spent part of the year outside 
the district, as long as they were enrolled in the MCS during testing in the prior and current years. 
Other researchers measuring school effectiveness omit many of these mobile students from their 
models, thereby ignoring important information about school effectiveness and potentially 
producing inaccurate results. 

4. The Value-Added Model 

The Mathematica VAM estimates a school’s impact on student performance across all tested 
grades and subjects that the school serves. It aims to measure how much a given school has raised 
student test scores, after accounting for factors out of the school’s control. For each test score 
outcome, the VAM includes the student’s corresponding test score in that subject in the previous 
grade and a set of variables that statistically controls for factors that can affect the academic growth 
of individual students: free or reduced price lunch status, limited English proficiency (LEP), special 
education status, grade level when tested, gender, ethnicity, whether the student switched schools 
between or within school years, and whether the student skipped a grade or was held back.  

A version of the model was also run that included only the previous test score, not these other 
contextual factors. There are advantages and disadvantages to including these other variables. School 
rankings are very similar under either method (correlation of school rankings across one-year models 
                                                 

2 Students who are held back or skip a grade have a lagged score that is standardized relative to the distribution of 
their grade level in each year. 

3 These are students who left the district and then returned between the baseline and follow-up tests. Students who 
left the district and did not return cannot be included because we do not have their end-of-year test scores. 
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was 0.996). NLNS used the model without other contextual factors to award schools and teachers in 
Year 2. 

Because a student’s performance on a single test is an imperfect measure of ability, Mathematica 
employs a statistical technique known as “instrumental variable estimation” to obtain a more 
accurate measure of prior student achievement. The Mathematica model incorporates information 
from the prior year on students’ performance on tests in other subjects to measure prior student 
achievement. For example, the measure of prior performance in math incorporates the measures of 
prior performance in English, science, and social studies. 

5. Ranking Schools on Overall Performance  

The VAM produces an estimated overall school effect across all grades and subjects the school 
serves. In addition to the overall school performance measure, Mathematica also estimates separate 
school performance measures for individual subjects.4 Even the highest ranked schools may not 
excel in every grade and subject. For example, both the elementary and middle school that are top-
ranked based on the overall VAM measure would rank sixth based on their VAM scores for science 
alone.  

6. Precision of School Rankings  

Mathematica estimates the precision of the school performance measures. One way to illustrate 
the uncertainty associated with estimated school rankings is to examine the 90 percent confidence 
interval for each school’s ranking. This gives a school’s best and worst rankings that fall within the 
margin of error associated with that school’s estimated performance measure.    

Figures 1, 2, and 3 show the confidence intervals for the school rankings in the elementary, 
middle, and high school grade ranges. These rankings are based on the full VAM, using one year of 
performance data and one year of baseline data. Schools are judged on their performance in the 
2007–08 school year. The straight diagonal line is the ranking of each school in that grade range, 
with the best schools having the lowest rankings. The jagged line above the diagonal shows the best 
rank in each school’s 90 percent confidence interval; the jagged line below the diagonal shows the 
worst rank for each school’s confidence interval.  

Since the model is used to identify the best-performing schools, the region of interest is the top 
right of the graph, documenting the precision of the rankings of the top-ranked schools. For 
example, Figure 1 shows that, given the uncertainty in our estimates of school rankings, with 90 
percent confidence, the top 10 percent of elementary schools—that is, the top 11 schools—all are 
ranked no worse than the top 24 percent of schools (that is, 26th out of 109 schools). The results are 
slightly more precise for middle schools, as the top 10 percent—that is, the top 4 schools—rank no 
worse than the top 18 percent of schools (that is, 7th out of 40 schools, as shown in Figure 2). The 
results for high schools are the least precise: the top 10 percent of high schools (the top 4) rank no 
worse than the top 39 percent (that is, 14th of 36 schools) with 90 percent confidence (Figure 3). 
                                                 

4 Within each grade range (elementary, middle, or high school), the school scores are set equal to zero so schools 
with a positive score are performing better than the average school included in the model, and schools with a negative 
score are shown as performing worse than average.  
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Figure 1. 90% Confidence Intervals for One-Year Full VAM Estimates, Elementary 

 

Source: Data collected and analyzed by Mathematica Policy Research. 

Note: The upper and lower lines are the upper and lower bounds of a 90 percent 
confidence interval around the school ranking, which is given as the middle line. 
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Figure 2. 90% Confidence Intervals for One-Year Full VAM Estimates, Middle School 

 

Source: Data collected and analyzed by Mathematica Policy Research. 

Note: The upper and lower lines are the upper and lower bounds of a 90 percent 
confidence interval around the school ranking, which is given as the middle line. 
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Figure 3. 90% Confidence Intervals for One-Year Full VAM Estimates, High School 

 

Source: Data collected and analyzed by Mathematica Policy Research. 

Note: The upper and lower lines are the upper and lower bounds of a 90 percent 
confidence interval around the school ranking, which is given as the middle line. 
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APPENDIX A:  TECHNICAL DETAILS OF THE VALUE-ADDED MODEL 

A. Estimation Sample 

The MCS have provided Mathematica with TCAP test scores for students in grades three 
through eight and Gateway exam test scores for high school students. Some students are excluded 
from the model due to insufficient data—most often a missing baseline test score. The model 
excludes grade three students because there are no prior year test scores for them (unless they failed 
third grade in the previous year). After excluding these students, there remained 48,114 tested 
students in 2007–08 who were matched with a prior test score. The main analysis was not restricted 
to schools eligible for awards but included all schools in Memphis with at least a total of 40 matched 
cases across both years and all subjects. In total, 109 elementary schools, 40 middle schools, and 36 
high schools were included. 

For students taking the Gateway English exam for the first time in 9th grade in 2007–08, their 
prior test score will be their 8th grade TCAP English language arts score from 2006–07, for 10th 
graders their score from 2005–06, for 11th graders their score from 2004–05, and for 12th graders 
their score from 2002–03. The model controls for the grade in which the student took the current 
test. 

B. Dosage Variables for Students Who Attended Multiple Schools  

MCS has provided administrative data tracking the percentage of the school year each student 
spent at every school he or she attended. Mathematica uses these data to account for student 
mobility within the school year by constructing school dosage variables for each school. These 
dosage variables are equal to the fraction of the school year that the student spent at that school. 
Because a school is unlikely to have an appreciable educational impact on a student who spends a 
very short time enrolled there, the dosage variable is set to zero for students who spent less than two 
weeks at a school and to one for students who spent all but two weeks or less there.  

C. Controlling for Measurement Error 

One of the key control variables in the VAM is the student’s prior year test score—for 
elementary and middle school students, the 2006–07 test. Any single test score contains 
measurement error, so including it as an explanatory variable can lead to attenuation bias in the 
estimate of the pretest coefficient and to bias of unknown direction in the other coefficients, 
including school dosage variables. To correct for this measurement error, the model uses two-stage 
least squares (2SLS), with the average of the student’s prior test scores in other subjects as an 
instrumental variable (IV) for the student’s prior test score. The coefficient on the prior test score 
variable increases from 0.57 with no IV to 0.88 when the average other subject prior scores are used 
as an IV.  

D. The Value-Added Model 

The VAM equation used to estimate school impacts: 

, , 1 , , 1 2 , 3 , , ,* * *i j t i j t i t i t i j tY Y X D eβ β β−= + + +  
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where, Yi,j,t is the 2007-08 test score for student i in subject j, Yi,j,t-1 is the predicted value for the 
prior test score for student i in subject j, Xi,t is a vector of controls for individual student 
characteristics (including a constant and other variables described below), Di,t is a vector of school 
dosage variables, and ei,j,t is the error term. The value of Yi,j,t-1 is assumed to capture all previous 
inputs into student achievement. The vector Di,t includes one variable for each school in the model. 
Each variable equals the percentage of the year student i attended that school. The value of any 
element of Di,t is zero if student i did not attend that school. The school performance measures are 
the coefficients on Di,t of the elements of the vector β3. The VAM is run jointly on all schools 
(elementary, middle, and high).The model includes control variables for exogenous student 
characteristics (Xi,t). These are chosen as factors outside of the school’s control so as to isolate the 
school effect on student achievement. In addition to the student’s lagged test score and the school-
by-grade dosage variables, the VAM regressions include the following variables: 

• Gender indicator5 

• Race/ethnicity indicators (white, African American, Hispanic, Asian, Native American) 

• Free or reduced price lunch indicator6 

• Limited English proficiency indicator7 

• Special education status indicator 

• First year at new school indicator 

• Indicators for skipping a grade or failing a grade since the last test 

• Indicator variables for grade level and subject and their interaction terms 

Because the overall VAM combines all subjects and grades, most students will be included in 
the model three to four times, once for each tested subject. The standard errors of the overall school 
performance measures are adjusted for the clustering of observations by student (Huber 1967, White 
1980). This standard error is used to calculate a 90 percent confidence interval for each school. This 
confidence interval was used to report a high and low rank for each school, which correspond to the 
estimated ranks the school would have received if their overall school performance measure was at 
the high or low end of their 90 percent confidence interval. Figures 1, 2, and 3 show the confidence 
intervals for the rankings of schools in the elementary, middle, and high school categories for the 
full one-year model. 

E. Shrinkage Estimator 

A new addition to the model this year is the shrinkage estimator, an empirical Bayes procedure 
outlined in Morris (1983). It uses an iterative process to jointly estimate the shrinkage weights for 
each school and the grand mean toward which all schools are shrunk. The basic idea is that 

                                                 
5 Gender also was interacted with subject. 
6 Free or reduced price lunch also was interacted with grade. 
7 LEP also was interacted with subject. 
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imprecisely measured school estimates can be improved by “borrowing strength” from the overall 
estimate because the mean effect is more precisely estimated than any of the individual school 
effects. Each school effect is shrunk toward the overall mean using a weighted average of its 
individual estimate and the overall weighted mean (which is unknown). The first step is to form 
weights equal to the inverse of the square of the standard error plus an estimate of the variance of 
the overall mean (also unknown, we used the raw variance of the school effects as the starting 
point). Using these weights recalculate the overall mean and variance of the school effects and then 
calculate new weights and repeat until the process converges. Since each school’s weight depends on 
the standard error of its original estimate, the Bayesian estimates for schools that are less precisely 
measured (with higher standard errors) will place more weight on the overall mean, compared to 
schools with lower standard errors. 

The mean weight placed on the overall mean from the full one-year VAM estimates is 0.08 (the 
minimum weight across schools is 0.04 and the maximum is 0.46). The correlation between the 
standard error of each school’s estimate and the weight placed on the overall mean is 0.98. The 
correlation between the estimates before and after shrinking is 0.99. 

All estimated models included a constant term. After shrinking the estimates, the coefficients 
were also mean-centered. An alternative model would omit the constant and include the omitted 
schools category as a control variable.8 The difference between the value-added estimate of any 
individual school relative to another is the same regardless of these modeling choices. 

F. Precision of the VAM Estimates 

Alternative ways of comparing the precision and variation of the rankings are presented in 
Table A.1 below. These include the mean standard error, the mean standard error squared, the 
standard deviation of the estimates, the ratio of the mean standard error to the standard deviation, 
and the reliabilities of the VAM estimates. The ratio of the mean standard error to the standard 
deviation can be interpreted as the fraction of the standard deviation due to noise. Reliabilities are a 
way of measuring the signal-to-noise ratio and are calculated as one minus the mean of squared 
standard error of the estimates, divided by the variance of the estimates.  

Table A.1 shows that using the shrinkage estimator decreases the mean standard errors of the 
estimates but also slightly decreases the reliability of the estimates because the standard deviation of 
the estimates decreases by a greater proportion, since all estimates are shrinking toward a common 
mean. 

                                                 
8 The omitted dosage variable is 1―ΣsDs , where Ds s are the dosage variables for the included schools. There are 

many students in the model for whom we have information on their schools for only part of the year. Thus, the omitted 
schools are the ones those students had for the remaining time. 
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Table A.1 Reliabilities of the School Value-Added Measures 

Model 

Mean 
Standard 
Error (SE) 

Mean 
Squared Std. 
Error (SSE) 

Std. Dev. of 
Estimates 

(σ) 
Mean 
SE/σ 

Reliability 
(1-SSE/σ2) 

Elementary schools, N=109     
1 yr, full, not shrunk .044 .002 .135 .330 .888 
1 yr, full, shrunk .043 .002 .123 .348 .876 

Middle schools, N=40     
1 yr, full, not shrunk .036 .001 .196 .184 .964 
1 yr, full, shrunk .035 .001 .172 .204 .956 

High schools, N=36      
1 yr, full, not shrunk .061 .004 .217 .282 .908 
1 yr, full, shrunk .056 .003 .173 .322 .887 

All schools, N=18510      
1 yr, full, not shrunk .046 .002 .169 .271 .918 
1 yr, full, shrunk .045 .002 .144 .302 .902 

 

G. Robustness of Model to Alternative Specifications11 

• Peer effects. Mathematica tested versions of the VAM that incorporate peer effects but 
do not use these control variables because the estimates of the peer effects were not 
robust to minor changes in specifications, and the effect on the school dosage variables 
was small. Our models which incorporated peer effects used two years of performance 
data and assumed constant school quality across years for each school. The estimated 
effects of peers were based on variation over time in the characteristics of the other 
students in the same school and grade. We calculated the mean and standard deviation of 
the test scores of other students and the percentage of other students who received free 
or reduced price lunch and included these variables in the VAM.12 Similar to Ballou 
(2007), we find that the coefficients on peer effects were unstable to small variations in 
the model. In addition, adding peer effects had little effect on the relative rankings of 
schools. The school VAM estimates without peer effects were correlated at 0.99 or 
higher when compared to models that included (1) means and standard deviations of 
once-lagged peer test scores, (2) means and standard deviations of twice-lagged peer test 
scores (as recommended by Hanushek et al. 2003), or (3) the percent of students who 
received free or reduced price lunch.  

                                                 
10 MCS charter schools and other schools that were ineligible for awards were included in the analysis for 

comparison sake. 
11 All of the results described in this section used models similar to the model described in Booker and Isenberg 

(2008). 
12 These means and percentages are dosage weighted in two ways. First, the peer effect variable for each school is 

weighted by the dosage for each student who attended that school. Second, the peer effect variable for each student is a 
dosage weighted average of the peer effect variables for each of the schools he or she attended.   
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• Imputed missing baseline scores. We ran a test to see whether or not imputing 
missing baseline test scores would improve our estimates. To do this test we assumed 
that mobile students for whom we did have data on baseline scores were similar to 
students who were missing baseline scores. We tested various models that imputed 
baseline test scores for these mobile students and found no method of imputation that 
would improve our models compared to dropping these students. To make comparisons 
we calculated the correlations between the results based on each of the imputation 
methods and the “true” model that included the actual pretest scores of mobile students. 
We also estimated a model excluding the mobile students. This is equivalent to assuming 
that they had the same value added as other students at those schools. This latter model 
had the highest correlation with the “true” model. Consequently, we chose not to impute 
missing baseline test scores. 

• Calculation of school enrollment. Since tests are not taken on the last day of each 
school year, the dosage variables do not measure the time spent in a school from one 
test to another. To test whether this affected our measures of school performance, we 
compared our model, which measured dosage using the entire school year during which 
the tests were taken, to a model that measured dosage between the first day of the school 
year and the test date. We found that adjusting the dosage measures in this way did not 
lead to any substantial change in the VA estimates. 
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