TOXIC RELEASES AND HEALTH

A Review of Pollution Data and Current Knowledge on the Health Effects of Toxic Chemicals

> Tony Dutzik Jeremiah Baumann Meghan Purvis

U.S. PIRG Education Fund

January 2003

ACKNOWLEDGMENTS

The authors would like to acknowledge Alison Cassady of U.S. PIRG for her work in coordinating the research and distribution of this report. Thanks also to Susan Rakov and Brad Heavner for their editorial assistance.

In addition, we would like to thank those who provided editorial review, including Paul Locke, Dr.PH, J.D., deputy director of the Trust for America's Health and Dr. Phil Landrigan, M.D., M. Sc., D.I.H. of the Mount Sinai School of Medicine.

We express our gratitude to The Pew Charitable Trusts for their financial support of this project.

The authors alone are responsible for any factual errors. The recommendations are those of the U.S. PIRG Education Fund. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided editorial review.

Copyright 2002 U.S. PIRG Education Fund

The U.S. PIRG Education Fund is the research and public education center for the U.S. Public Interest Research Group (U.S. PIRG), the national advocacy office of the State PIRGs. The State PIRGs are a nationwide network of nonprofit, nonpartisan, state-based public interest advocacy organizations. Through U.S. PIRG and the U.S. PIRG Education Fund, they promote a national agenda of environmental and consumer protection and good government.

For additional copies of this report, send \$20 (including shipping) to:

U.S. PIRG Education Fund 218 D St. SE Washington, DC 20003 202-546-9707 uspirg@pirg.org

For more information about the state PIRGs, visit our Web site at www.pirg.org.

TABLE OF CONTENTS

EXECUTIVE SUMMARY 5

INTRODUCTION 9

TOXIC RELEASES IN THE U.S. 10

CANCER-CAUSING CHEMICALS 10 DEVELOPMENTAL AND REPRODUCTIVE TOXICANTS 13 SUSPECTED NEUROLOGICAL TOXICANTS 19 SUSPECTED RESPIRATORY TOXICANTS 23 DIOXINS 25 MANY TOXIC RELEASES GO UNREPORTED 27

TRENDS AND LESSONS FROM THE DATA 29

TRENDS IN TOXIC RELEASES29LESSONS FROM THE DATA31

MAKING THE LINK BETWEEN TOXICS AND HEALTH 33

MANY CHEMICALS LACK PUBLICLY AVAILABLE TOXICITY DATA 33 Degree of Human Exposure Unknown 34 Tracking of Chronic Disease is Limited 35

PROTECTING PUBLIC HEALTH FROM TOXIC CHEMICALS 37

TRACKING THE LINK BETWEEN TOXICS AND HEALTH37Expanding Citizens' Right to Know38Reducing Toxic Releases38

METHODOLOGY 41

NOTES 45

APPENDIX A: GLOSSARY OF ABBREVIATIONS A-1

APPENDIX B: CHEMICALS AND HEALTH EFFECTS A-2

APPENDIX C: NATIONAL TOXIC RELEASE RANKINGS A-15

C.1 Releases by State A-15 C.2 Releases by County A-21 C.3 Releases by Facility A-27 C.4 Cumulative (1987-2000) Releases by State A-33

APPENDIX D (IN STATE REPORTS ONLY): STATE DATA

EXECUTIVE SUMMARY

E ach year, industrial facilities nationwide release hundreds of millions of pounds of chemicals linked to cancer, to developmental and reproductive problems, and to neurological and respiratory disorders into the nation's air and water. Yet, communities in the shadow of industrial facilities typically have access to only limited information on how these discharges may be affecting their health.

A review of data reported to the EPA's Toxics Release Inventory (TRI) demonstrates the degree to which toxic substances with links to serious health problems are released into our communities and highlights which industry sectors and companies are responsible for the bulk of toxic pollution. More importantly, these data demonstrate the need for more and better information about chemical toxicity, the release of toxics into the environment, and the links between toxic chemicals and the development of chronic disease.

Toxic chemicals linked to severe health problems continue to be released in massive quantities nationwide.

- In 2000, more than 100 million pounds of **cancer-causing chemicals** were released to the nation's air and water, with dichloro-methane—an industrial solvent that is also used in the manufacture of photographic film—the most frequently released carcinogen nationwide.
- More than 138 million pounds of chemicals linked to developmental problems such as birth defects and learning disabilities, and 50 million pounds of chemicals related to reproductive disorders were released to air and water in 2000. Toluene (a developmental toxicant) and carbon disulfide (a developmental and reproductive toxicant) were released in the greatest quantities.
- More than one billion pounds of suspected neurological toxicants were released to air and water in 2000. Methanol—a solvent and product of wood pulping—was the most

commonly released chemical with suspected links to neurological disorders.

- In 2000, more than 1.7 billion pounds of suspected **respiratory toxicants** were released to the nation's air, with acid aerosols of hydrochloric acid the most commonly released toxic substance.
- More than 7,000 grams of dioxins—regarded as among the most toxic substances known to science—were released to air and water in 2000.
- Significant releases were also reported of several persistent, highly toxic substances, such as lead (275,000 pounds), lead compounds (1.3 million pounds), mercury (30,000 pounds) and mercury compounds (136,000 pounds).

High-volume toxic chemical releases appear to be concentrated among a small number of communities.

- Approximately three-quarters (76 percent) of all air and water releases of reproductive toxicants in 2000 occurred within just 10 U.S. zip codes. Similarly, nearly two-thirds (65 percent) of all dioxin releases and one-third (32 percent) of all developmental toxicant releases occurred within just 10 zip codes.
- Many communities have been subjected to high-volume toxic releases year after year. Since the start of TRI reporting in 1987, 10 zip codes have received more than two-thirds (68 percent) of all reported air and water releases of reproductive toxicants and more than onequarter (26 percent) of all developmental toxicant releases.

The "Sunbelt" has supplanted the "Rust Belt" as the nation's leading source of toxic chemical releases with known or suspected links to serious health problems.

• Thirteen southern states, stretching from North Carolina to New Mexico, were respon-

sible for 48 percent of all carcinogen releases reported by original TRI industries nationwide in 2000, up from just 33 percent in 1987. By contrast, the 19 states of the industrial Northeast and Midwest saw their proportion of carcinogen releases decline from approximately 52 percent of the national total in 1987 to 41 percent in 2000.

- The southern states were also responsible for more than three-quarters (78 percent) of all reported air and water releases of reproductive toxicants in 2000, as well as 67 percent of all dioxin releases, 59 percent of all developmental toxicant releases, and 50 percent of all suspected neurotoxicant releases. In each category except dioxin releases (for which reporting began in 2000), the South's proportion of toxic chemical releases has increased significantly since 1987.
- Individual Sunbelt states are also among the leading releasers of toxic chemicals. Texas experienced greater releases of carcinogens, neurological toxicants and dioxins than any other state and ranked in the top five for releases of developmental and reproductive toxicants. Tennessee ranked first for releases of developmental and reproductive toxicants and in the top five for releases of carcinogens and suspected neurological toxicants.

Communities subjected to high-volume toxic releases have access to only limited information about how those releases might affect their health.

 Many states—especially those with high levels of toxic releases—fail to adequately track cases of cancer, birth defects, asthma and other chronic diseases. Only three states— California, Iowa and Massachusetts—possess cancer and birth defects registries that meet the highest standards for quality as well as any system at all for the tracking of asthma cases. As a result, researchers, health officials, and the public can't adequately determine whether disease rates show patterns reflecting the release of high quantities of chemicals linked to those diseases.

- Scientific information on the health effects of many toxic chemicals is limited or nonexistent. A 1998 EPA review found that only 7 percent of the nearly 3,000 chemicals made or imported to the U.S. in large quantities possessed a complete set of publicly available screening data on their toxicity. Even for those chemicals that have been studied, little information exists on how those substances can influence human health at environmental levels of exposure.
- Government surveys that measure human exposure to toxic chemicals cover only about 6 percent of the potentially dangerous chemicals on the market today. The information that does exist on human exposure is limited and generally of little use in determining the degree to which residents of a particular area have been exposed to toxicants.
- The Toxics Release Inventory only covers releases of less than one percent of the estimated 80,000 chemicals in commerce today.
 Further, TRI covers only releases from the largest facilities in a limited number of industries. As a result, releases of potentially health-threatening releases of toxic chemicals are greater than are reported to TRI.

Creation of a Nationwide Health Tracking Network would enable citizens, scientists and public health officials to better assess and respond to the threats posed by toxic releases. An effective health tracking network would include:

- Expanded monitoring of human exposure to toxic chemicals, so that public health officials have a clearer understanding of the levels of toxicants to which Americans are exposed.
- Enhanced tracking of chronic diseases—such as asthma, cancer, birth defects and Alzheimer's—in order to help evaluate the potential links between these diseases and toxic exposures.
- An early warning system to alert communities to immediate health crises such as heavy metal and pesticide poisonings.

• Rapid response teams to quickly evaluate disease clusters and other health threats thought to be linked to specific toxic exposures.

Other steps—such as expanded reporting of toxic releases, increased emphasis on reducing the use of toxics, and better information on the health effects of chemicals on the market—could also help protect communities from the potential health impacts of toxic releases.

INTRODUCTION

E very day in America, industrial facilities release millions of pounds of toxic substances into the nation's air and water. Many Americans—especially those who live in close proximity to industrial facilities—harbor deep concern about how those toxic releases may affect their health.

Those concerns are justified. Scientists have identified hundreds of substances—including many that are used and released in vast quantities by American industry—that can cause cancer, impair normal development, impede reproduction, disrupt the nervous system and cause respiratory disease. Research conducted by the Environmental Protection Agency has shown that levels of airborne toxicants and dioxins to which Americans are routinely exposed result in an elevated risk of cancer. And government and academic researchers continue to amass evidence linking exposure to a range of environmental pollutants with serious health effects.

Yet, for any particular community, understanding the potential health threats that could result from toxic releases is a nearly impossible task. Public health officials often lack sufficient understanding of how citizens have been exposed to toxic substances, how those substances work within the body, and how many people have contracted chronic disease within a community to render conclusive judgments as to whether particular toxic exposures have led—or can lead—to increases in disease.

Moreover, while many Americans assume that chemicals are thoroughly tested for safety before they are introduced to the market, the opposite is true. Many of the 80,000 chemicals in commerce today have simply never been fully studied for their ability to cause cancer, reproductive or developmental problems, or other health impacts. Futher, regulatory agencies have severely limited ability to restrict or prohibit the use of chemicals even when links to health effects are well known.

The information that does exist about toxic releases in the United States is far from reassuring. Since 1987, industries have been required to report their releases of certain toxic chemicals to the federal government through the Toxics Release Inventory (TRI). TRI does not cover all industries, all chemicals, or all releases of those chemicals, and within covered industries, only the largest facilities report. But the partial picture that it paints of toxic releases in the United States suggests that many communities have ample reason for concern.

This report uses TRI data to quantify industrial releases of toxic chemicals that have been linked to five categories of health effects: cancer, reproductive disorders, developmental problems, neurological disorders and respiratory disease. It identifies the communities that have experienced the greatest toxic releases to air and water, the toxic chemicals that have been released in the greatest quantities nationwide, and the industries that were responsible for the largest releases.

What this report cannot do is to answer an important question: How have these toxic releases affected our health? To answer that question, scientists, public health officials and communities must have access to much more information than is currently available about toxic chemicals and health. They must be able to quantify whether, and to what extent, the toxic chemicals that are released into our air and water find their way into our bodies. They must have better knowledge of how those chemicals work when they do enter the body. They must have access to up-to-date information about patterns of chronic disease in our communities. And they must have the resources to conduct investigations capable of making sound conclusions about the potential impact of toxic exposures on a community's health.

TOXIC RELEASES IN THE U.S.

CANCER-CAUSING CHEMICALS

The link between various toxic exposures and cancer has long been understood. For example, occupational exposure to vinyl chloride has been conclusively linked to liver cancer, while exposure to asbestos fibers has been proven to cause the rare cancer, mesothelioma.

The carcinogenicity of various chemicals has also traditionally received more scrutiny than other health impacts. The National Toxicology Program an interagency program involving the National Institutes of Health (NIH), the Centers for Disease Control and Prevention (CDC), and the Food and Drug Administration (FDA)—has published nine editions of its *Report on Carcinogens*, which lists substances that are known or reasonably considered to cause cancer. The ninth edition of the report, published in May 2000, included 218 substances known or reasonably anticipated to cause cancer.¹

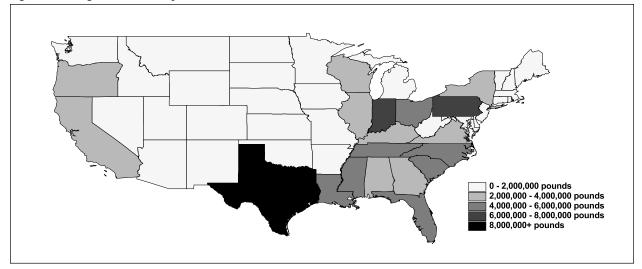
The most comprehensive list of substances known to cause cancer is compiled by the state of California for implementation of Proposition 65 (Prop 65), a measure passed by voters in that state in 1986. Prop 65 required the state of California to identify carcinogens and reproductive toxicants based on information from a variety of sources. Chemicals that have been classified as carcinogens or reproductive toxicants by an "authoritative" source-such as the Environmental Protection Agency (EPA), the FDA or the National Toxicology Program-can be added to the list. Chemicals may also be added if they are required to be labeled or identified as a carcinogen or reproductive toxicant by the federal government or the state of California. Substances not listed for other reasons may be added to the Prop 65 list if the state's "qualified experts"-two independent commissions of scientists and health experts-find that the chemical has been clearly shown to cause cancer, developmental problems or reproductive harm.

California's Proposition 65 list identifies more than 440 chemicals as "known to the state of California to cause cancer." Of these substances, releases of approximately 230 chemicals are reported to the EPA's Toxics Release Inventory (TRI).²

Chemical	Air	Water	Total
DICHLOROMETHANE	30,782,468	10,292	30,792,760
ACETALDEHYDE	12,376,449	195,014	12,571,463
FORMALDEHYDE	11,607,326	408,134	12,015,460
TRICHLOROETHYLENE	9,716,016	593	9,716,609
BENZENE	6,895,255	22,660	6,917,915
CHLOROFORM	3,444,301	56,341	3,500,642
TETRACHLOROETHYLENE	3,453,932	1,159	3,455,091
NAPHTHALENE	2,324,487	48,855	2,373,342
1,3-BUTADIENE	2,165,441	1,163	2,166,604
CHLOROETHANE	2,067,847	693	2,068,540

Table 1: Releases of Carcinogens, 2000 (pounds)

Releases by Chemical


In 2000, more than 100 million pounds of carcinogens were released directly to the air and water by facilities reporting to TRI. Dichloromethane was the most frequently released carcinogen to air and water in 2000, with total releases of more than 30 million pounds. A total of 538 facilities reported dichloromethane releases to air or water in 2000.

Dichloromethane—also known as methylene chloride—is used as an industrial solvent and paint stripper and is also used in the manufacture of photographic film. It is primarily released to the environment through the air, and mostly dissipates within two to four months. High-level exposure to dichloromethane can cause dizziness and nausea, while inhalation of smaller amounts may reduce attention and accuracy in tasks involving hand-eye coordination. Its impact on developmental and reproductive health is unknown, although some birth defects have been seen in animals inhaling high levels of dichloromethane.3 In addition to being listed as a known carcinogen under Prop 65, dichloromethane is a suspected respiratory and neurological toxicant.

Releases by Location

The states of Texas, Pennsylvania and Indiana ranked first, second and third for total carcinogen releases in 2000. Zip code 38879 in Verona, Mississippi, site of a Carpenter Co. facility in the plastic foam products industry, ranked first for total releases, followed by zip codes in Elkhart, Indiana and Corry, Pennsylvania.

Fig. 1: Carcinogen Emissions by State, 2000

Over the 1987-2000 period, more than 2.9 billion pounds of carcinogenic substances were reported released to air and surface water under TRI. Zip code 14652 in Rochester, New York—home to the Eastman Kodak Co.—experienced the greatest overall releases, followed by zip codes in Mount Vernon, Indiana and Verona, Mississippi. Kodak's releases of cancer-causing chemicals have dropped considerably since the start of TRI reporting, from approximately 9.6 million pounds in 1987 to about 1.3 million pounds in 2000, but the facility's releases were still large enough to rank its Rochester zip code sixth for carcinogen releases reported to TRI in 2000. (See box, next page.)

Table 2: Top 20 U.S. Zip Codes for Carcinogen Releases, 2000 (pounds)

City	State	Zip	Air	Water	Total
VERONA	MS	38879	1,929,778	0	1,929,778
ELKHART	IN	46516	1,908,293	0	1,908,293
CORRY	PA	16407	1,782,417	0	1,782,417
BARCELONETA	PR	00617	1,366,418	0	1,366,418
GEORGETOWN	SC	29440	1,346,667	4,705	1,351,372
ROCHESTER	NY	14652	1,308,713	8,933	1,317,646
MILAN	TN	38358	1,306,181	0	1,306,181
HAZLETON	PA	18201	1,079,909	0	1,079,909
TUPELO	MS	38801	1,056,116	0	1,056,116
SPENCERVILLE	OH	45887	1,020,618	0	1,020,618
LOUISVILLE	KY	40216	837,987	1,197	839,184
MORRISTOWN	TN	37814	792,259	0	792,259
BRYANT	FL	33439	791,520	0	791,520
GEISMAR	LA	70734	757,849	19,447	777,296
HANNIBAL	OH	43931	763,500	0	763,500
LONGVIEW	WA	98632	737,309	13,938	751,247
LATHROP	CA	95330	711,095	0	711,095
ELKHART	IN	46517	686,133	0	686,133
MIAMI	FL	33167	665,504	0	665,504
CHATTANOOGA	TN	37406	592,720	0	592,720

Community Profile: Rochester, New York

Zip code 14652 in Rochester, New York led all zip codes for emissions of cancer-causing chemicals from 1987 to 2000. Of the 64.4 million pounds of carcinogens released over that period, more than 58 million pounds were air releases of dichloromethane by the Eastman Kodak Co. In addition, Eastman Kodak's Kodak Park facility in Rochester ranked among the top 100 facilities nationwide for TRI releases of dioxin in 2000, emitting just under 5 grams of the substance to air and water.

For many years, scientists, health officials and local residents have inquired as to what the impact of Kodak's emissions might be on residents of the densely populated urban area nearby—with conflicting results. A 1991 study by University of Rochester researchers found no significant adverse impact on birthweight resulting from dichloromethane exposure.⁴ However, a 1995 New York State Department of Health study found that women living near the Kodak Park manufacturing facility had an approximately 80 percent greater risk of developing pancreatic cancer. The U.S. Agency for Toxic Substances and Disease Registry (ATSDR), in a 1998 study designed to examine a possible cluster of childhood brain cancer cases in surrounding Monroe County, uncovered what may have been an excess in thyroid cancer cases in young girls in the county. Another study conducted by the county and the state department of health found no increase in cancer incidence in the area.⁵

More research remains to be done—especially with regard to following up on ATSDR's 1998 recommendation that an intensive review be conducted of childhood brain and spinal cord cancer cases in the area. Kodak's continued releases of dichloromethane and dioxin and the questions raised by earlier health studies demonstrate the importance of expanding efforts to investigate the impact of toxic releases on communities.

City	State	Zip	Air	Water	Total
ROCHESTER	NY	14652	62,799,357	1,583,283	64,382,640
MOUNT VERNON	IN	47620	35,123,556	56,799	35,180,355
VERONA	MS	38879	33,026,913	0	33,026,913
BARCELONETA	PR	00617	28,753,259	0	28,753,259
KALAMAZOO	MI	49001	27,641,689	51,627	27,693,316
WICHITA	KS	67210	25,709,955	7,665	25,717,620
ELKHART	IN	46516	20,894,355	0	20,894,355
CLINTON	IN	47842	18,752,060	16,655	18,768,715
FREEPORT	ТΧ	77541	18,236,245	404,120	18,640,365
CORRY	PA	16407	17,973,555	0	17,973,555
GEISMAR	LA	70734	17,776,982	175,070	17,952,052
CONOVER	NC	28613	16,920,524	0	16,920,524
GRENADA	MS	38901	15,984,662	2,583	15,987,245
WHITMORE LAKE	MI	48189	14,827,257	0	14,827,257
TOWANDA	PA	18848	14,801,394	20,179	14,821,573
LAFAYETTE	IN	47909	14,166,338	8,087	14,174,425
MILAN	TN	38358	14,017,081	0	14,017,081
CONNERSVILLE	IN	47331	12,842,701	0	12,842,701
RUSSELLVILLE	KY	42276	12,288,000	19	12,288,019
HIGH POINT	NC	27263	12,027,465	0	12,027,465

Table 3. Top 20 U.S. Zip Codes for Carcinogen Releases, 1987-2000 (pounds)
--

Table 4: Carcinogen Releases by Industry Sector, 2000 (pounds)

Industry	Air	Water	Total
PLASTICS FOAM PRODUCTS	18,942,129	5	18,942,134
INDUSTRIAL ORGANIC			
CHEMICALS, NEC	7,094,810	156,469	7,251,278
PULP MILLS	6,396,524	343,878	6,740,402
RECONSTITUTED WOOD			
PRODUCTS	5,552,142	1,101	5,553,243
PLASTICS MATERIALS AND			
RESINS	4,529,880	108,735	4,638,615
PAPER MILLS	3,902,474	198,116	4,100,589
PAPERBOARD MILLS	3,763,525	45,556	3,809,081
PETROLEUM REFINING	3,160,385	42,103	3,202,488
PHARMACEUTICAL			
PREPARATIONS	2,851,794	1,950	2,853,745
ELECTRIC SERVICES	1,731,458	481,611	2,213,068
NEC= Not Elsewhere Classified			

Releases by Industry Sector and Parent Company

TRI data also indicate which industry sectors and companies are responsible for the greatest releases of chemicals with various toxic effects. Not all industry sectors are required to report to TRI, nor are all companies within a given sector. As a result, TRI data provide an incomplete picture of the degree of toxic releases in our communities.

One way to gauge just how much toxic pollution is not reported to TRI is to compare the number of facilities reporting releases to TRI with the number of establishments within a given industry sector as reported to the U.S. Census Bureau in its 1997 Economic Census. While this is a crude measurement, it does suggest that the majority of facilities within certain industry sectors do not meet either the size or chemical use thresholds that trigger reporting under TRI.

The plastics foam products industry was responsible for about 19 percent of all releases of carcinogenic substances during 2000. A total of 97 facilities within the plastics foam products industry reported air or water releases of cancer-causing chemicals or about 8 percent of the estimated 1,178 facilities within the industry sector nationwide as reported to the 1997 Economic Census.⁶ Plastic foam products include polystyrene and urethane foams used in automobiles, furniture, carpeting, packaging and other consumer products. More than half of all carcinogen releases from the plastic foam products sector were air emissions of dichloromethane.

Table 5: Carcinogen Releases by Parent Company, 2000 (pounds)

Parent Company	Total
FOAMEX INTL. INC.	5,729,403
CARPENTER CO.	3,845,257
GEORGIA-PACIFIC CORP.	3,508,070
INTERNATIONAL PAPER CO.	3,371,576
OHIO DECORATIVE PRODS. INC.	3,146,670
DOW CHEMICAL CO.	2,083,146
WEYERHAEUSER CO.	1,793,158
ABBOTT LABS.	1,446,819
EASTMAN KODAK CO.	1,317,646
E. I. DU PONT DE NEMOURS & CO. INC.	1,270,446

Two companies within the plastic foam products industry—Foamex, Inc. and Carpenter Co. led all corporations for air and water releases of carcinogens reported to TRI in 2000. They were followed by Georgia-Pacific Corp., which released large amounts of acetaldehyde and formaldehyde.

DEVELOPMENTAL AND REPRODUCTIVE TOXICANTS

Some toxic chemicals have also been shown to impede the proper physical and mental development of young children. Potential developmental health effects cover a wide range of conditions including fetal death, structural defects such as cleft lip/cleft palate and heart abnormalities, and functional defects such as neurological, hormonal or immune system problems.

Less is known about the developmental impacts of many toxic chemicals than about their carcinogenicity, in part because developmental effects have been less widely studied and in part because the mechanism by which toxic substances can impact development is very complex. Very few chemicals have been fully tested for their impact on the developing fetus. In fact, of the nearly 3,000 high production volume chemicals studied by EPA in 1998, 77 percent did not have publicly available screening-level information on developmental or reproductive toxicity.⁷ In addition, the timing of an exposure during a fetus or child's development can be of critical importance. Maternal exposure to a

Table 6. Developmental Toxicant Releases, 2000 (pounds)⁸

Chemical	Air	Water	Total
TOLUENE	81,257,581	40,497	81,298,078
CARBON DISULFIDE	40,584,960	3,704	40,588,664
BENZENE	6,895,255	22,660	6,917,915
N-METHYL-2-PYRROLIDONE	3,109,498	18,652	3,128,150
CHLOROMETHANE	1,910,923	1,187	1,912,110
LEAD COMPOUNDS	1,225,794	80,506	1,306,299
BROMOMETHANE	930,371	37	930,408
2-METHOXYETHANOL	886,237	22,286	908,523
ARSENIC COMPOUNDS	240,956	166,482	407,438
LEAD	260,040	14,579	274,619

toxic substance at a critical time during pregnancy may result in a developmental defect, while exposure during another time may not.

Based on available knowledge, the state of California has listed more than 240 substances as known to cause developmental disorders under Prop 65. Of these substances, releases of 45 are reported to TRI.

Toxic substances also have the potential to impair the male or female reproductive system, leading to sterility, spontaneous abortion or stillbirth. The state of California has listed approximately 37 substances as known to cause reproductive disorders in females and about 54 substances known to cause reproductive disorders in males. Of the substances linked to male or female reproductive disorders, releases of 30 are reported to TRI.

Releases by Chemical

Because many of the same chemicals that are linked to developmental disorders are also linked to reproductive problems, it is more appropriate to review the two categories together.

In 2000, more than 138 million pounds of developmental toxicants were released directly to the air and water by facilities that report to TRI. Toluene was the most commonly released developmental toxicant in 2000, followed by carbon disulfide and benzene.

A total of 50.8 million pounds of reproductive toxicants were released nationally in 2000. Carbon disulfide was the reproductive toxicant released in

Table 7: Reproductive Toxicant Releases, 2000 (pounds)

Chemical	Air	Water	Total
CARBON DISULFIDE	40,584,960	3,704	40,588,664
BENZENE	6,895,255	22,660	6,917,915
LEAD COMPOUNDS	1,225,794	80,506	1,306,299
2-METHOXYETHANOL	886,237	22,286	908,523
ETHYLENE OXIDE	465,243	6,912	472,155
LEAD	260,040	14,579	274,619
EPICHLOROHYDRIN	201,065	389	201,454
2-ETHOXYETHANOL	75,376	380	75,756
CADMIUM COMPOUNDS	30,292	8,755	39,047
1,2-DIBROMOETHANE	13,822	11	13,833

the greatest quantity to air and water in 2000, followed by benzene and lead compounds.⁹

Toluene occurs naturally in crude oil and is produced in the process of refining oil and making coke from coal. It is also used in the manufacture of paints, fingernail polish, adhesives and other products. Toluene does not remain in the environment for long, nor does it accumulate within animal tissue. At high levels of exposure, toluene can affect the kidneys, induce light-headedness or cause unconsciousness or death. Lower level exposures can affect the nervous system and cause fatigue, nausea, and temporary hearing and color vision loss. No evidence links toluene to cancer, but inhalation of high levels of toluene during pregnancy can result in children with birth defects and mental retardation. Less is known about the developmental impacts of low-level exposure during pregnancy.10 Toluene is also a suspected neurological and respiratory toxicant.

Carbon disulfide is used in various manufacturing processes and can be lethal at high levels of exposure due to impacts on the nervous system. Animal studies suggest that carbon disulfide can affect the normal functions of the brain, liver and heart and can lead to birth defects and neonatal death.¹¹

Releases by Location

Tennessee ranked first overall in releases of both developmental and reproductive toxicants, followed by Alabama and Illinois. In all three states, one facility in one zip code contributed a sizable

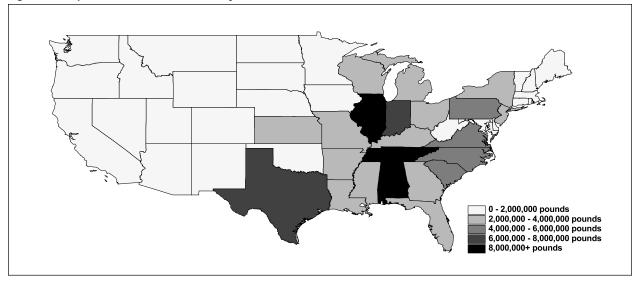
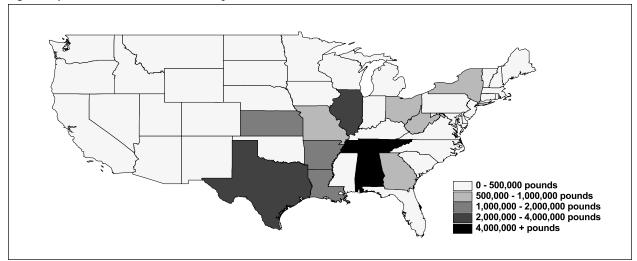

City	State	Zip	Air	Water	Total
LOWLAND	TN	37778	16,959,799	750	16,960,549
AXIS	AL	36505	11,327,588	981	11,328,569
DANVILLE	IL	61832	3,236,668	0	3,236,668
COLUMBIA	SC	29201	2,404,000	0	2,404,000
LOUDON	TN	37774	2,115,007	0	2,115,007
DICKSON	TN	37055	1,782,322	0	1,782,322
HICKORY	NC	28601	1,710,773	0	1,710,773
CORINTH	MS	38834	1,458,743	0	1,458,743
MEMPHIS	TN	38116	1,420,632	0	1,420,632
OSCEOLA	AR	72370	1,315,004	250	1,315,254
TECUMSEH	KS	66542	1,281,839	0	1,281,839
FRANKLIN	KY	42134	1,240,434	0	1,240,434
RICHMOND	VA	23228	1,205,862	0	1,205,862
LOUISVILLE	KY	40216	1,137,572	77	1,137,649
EDINBURGH	IN	46124	1,000,310	0	1,000,310
ATGLEN	PA	19310	935,451	0	935,451
BARNSDALL	OK	74002	911,700	0	911,700
LOMIRA	WI	53048	904,200	0	904,200
MATTOON	IL	61938	868,880	0	868,880
WESTVILLE	NJ	08093	857,016	60	857,076

Table 8: Top 20 U.S. Zip Codes for Releases of Developmental Toxicants, 2000 (pounds)

share of total releases. The Lenzing Fibers Corp. facility in zip code 37778 in Lowland, Tennessee helped propel that zip code to the top of the list for developmental toxicants, followed by zip codes in Axis, Alabama and Danville, Illinois. The same three zip codes also ranked first through third for releases of reproductive toxicants. Over the 1987 to 2000 period, more than 4.2 billion pounds of developmental toxicants were released to the nation's air and surface water. Zip code 36505 in Axis, Alabama ranked first for developmental toxicant releases, followed by zip codes in Lowland, Tennessee and Front Royal, Virginia. In

City	State	Zip	Air	Water	Total
LOWLAND	TN	37778	16,959,784	750	16,960,534
AXIS	AL	36505	11,308,000	981	11,308,981
DANVILLE	IL	61832	3,229,146	0	3,229,146
LOUDON	TN	37774	2,115,000	0	2,115,000
OSCEOLA	AR	72370	1,315,004	250	1,315,254
TECUMSEH	KS	66542	1,023,140	0	1,023,140
COLUMBIA	TN	38402	836,367	164	836,531
TONAWANDA	NY	14150	748,021	1	748,022
PROCTOR	WV	26055	650,000	0	650,000
SANDERSVILLE	GA	31082	430,800	0	430,800
ULYSSES	KS	67880	420,000	0	420,000
PRAIRIE DU CHIEN	WI	53821	381,000	0	381,000
HAMPTON	SC	29924	325,300	0	325,300
BRYANT	FL	33439	314,220	0	314,220
ROXANA	IL	62084	296,002	0	296,002
PAMPA	ТΧ	79066	284,890	0	284,890
HERCULANEUM	MO	63048	284,390	293	284,683
GEISMAR	LA	70734	270,496	786	271,282
DEER PARK	ТΧ	77536	270,344	252	270,596
WESTVILLE	NJ	08093	216,441	50	216,491

Fig. 2 Developmental Toxicant Releases by State, 2000


Front Royal, the vast majority of TRI releases were made by Avtex Fibers in 1987 and 1988—the last year for which the facility reported developmental toxicant releases to TRI. The Avtex facility was

added to EPA's Superfund list of priority toxic waste sites in 1986 and all manufacturing at the facility ceased in 1989.¹²

City	State	Zip	Air	Water	Total
AXIS	AL	36505	448,146,948	91,464	448,238,412
LOWLAND	TN	37778	266,138,799	1,005	266,139,804
FRONT ROYAL	VA	22630	84,245,813	0	84,245,813
DANVILLE	IL	61832	45,598,596	552	45,599,148
LOUISVILLE	KY	40216	43,948,352	7,000	43,955,352
COLUMBIA	SC	29201	43,665,983	0	43,665,983
ELIZABETHTON	TN	37643	38,557,050	121,200	38,678,250
HUTCHINSON	MN	55350	37,197,736	5	37,197,741
MARYSVILLE	MI	48040	36,858,260	725	36,858,985
LOUISA	LA	70538	33,486,164	0	33,486,164
CORINTH	MS	38834	31,582,678	0	31,582,678
LOUDON	TN	37774	29,343,296	25	29,343,321
WARSAW	IN	46580	29,265,294	666	29,265,960
CHURCH HILL	TN	37642	28,381,181	0	28,381,181
HICKORY	NC	28601	26,693,015	0	26,693,015
COVINGTON	IN	47932	25,545,317	0	25,545,317
LINCOLN	NE	68504	24,994,104	11,646	25,005,750
DICKSON	TN	37055	22,865,736	0	22,865,736
COLUMBIA	TN	38402	21,772,791	2,656	21,775,447
GALLATIN	TN	37066	21,414,363	5,216	21,419,579

Table 10. Top 20 U.S. Zip Codes for Developmental Toxicant Releases, 1987-2000 (pounds)

Fig. 3. Reproductive Toxicant Releases by State, 2000

From 1987 to 2000, approximately 1.5 billion pounds of reproductive toxicants were released to air and water nationwide. As is the case with developmental toxicants, zip codes in Axis, Alabama, Lowland, Tennessee and Front Royal, Virginia ranked first through third in releases of reproductive toxicants.

City	State	Zip	Air	Water	Total
AXIS	AL	36505	447,991,153	89,469	448,080,622
LOWLAND	TN	37778	266,138,784	1,005	266,139,789
FRONT ROYAL	VA	22630	83,390,833	0	83,390,833
DANVILLE	IL	61832	45,326,514	552	45,327,066
ELIZABETHTON	TN	37643	38,554,400	121,200	38,675,600
LOUISA	LA	70538	33,486,158	0	33,486,158
LOUDON	TN	37774	29,237,502	25	29,237,527
COVINGTON	IN	47932	22,975,831	0	22,975,831
COLUMBIA	TN	38402	21,772,791	2,656	21,775,447
OSCEOLA	AR	72370	17,339,052	8,300	17,347,352
VILLE PLATTE	LA	70586	16,009,309	0	16,009,309
CHICAGO	IL	60638	15,224,224	0	15,224,224
TONAWANDA	NY	14150	13,265,697	1,873	13,267,570
CENTERVILLE	LA	70522	12,497,022	0	12,497,022
TECUMSEH	KS	66542	11,725,282	0	11,725,282
PROCTOR	WV	26055	9,294,271	0	9,294,271
FOLLANSBEE	WV	26037	8,522,908	688	8,523,596
BIG SPRING	ТХ	79720	7,674,905	2,495	7,677,400
EL DORADO	AR	71730	7,558,068	1,110	7,559,178
DEER PARK	ТХ	77536	7,268,558	1,172	7,269,730

Table 11. Top 20 U.S. Zip Codes for Reproductive Toxicant Releases, 1987-2000 (pounds)

Community Profile: Dickson County, Tennessee

Dickson County, Tennessee ranked eighth among U.S. counties for discharges of developmental toxicants in 2000. Over the entire 1987-2000 period, zip code 37055 in Dickson, Tennessee ranked 18th for releases of developmental toxicants, with a total of more than 22.8 million pounds of releases—the vast majority of them releases of toluene, all of which took place to the air. Developmental toxicant releases in Dickson County increased tenfold between 1987 and 1990 and have surpassed 1.3 million pounds each year for the last decade. Releases of developmental toxicants in the county peaked in 1995-96 and again in 1998-99, surpassing 2 million pounds in each of those four years.

In June 2000, the Tennessee Department of Health was alerted by a local early intervention center to what appeared to be a cluster of cases of cleft lip and cleft palate in Dickson County. The state eventually identified 18 infants born with clefts between 1997 and 2000—a rate significantly higher than what would have been expected. Researchers from the Centers for Disease Control interviewed 15 of the 18 mothers in an effort to determine whether the clefts had a common cause. While 13 of the 15 mothers reported using a municipal water source, no other environmental exposures (except for smoking and occupational exposure to chemicals) were evaluated. CDC concluded that no single factor appeared to be responsible for the cluster, but noted that a more formal case-control study might be warranted if more children are born with the defect.¹³

It is unknown whether exposure to toluene in the ambient air had any impact on the development of the cleft lip/cleft palate cluster, or whether residents of the county were exposed to the substance at levels that could have affected their health. Moreover, the links between low-level exposures to toluene during pregnancy and the development of birth defects are poorly understood. However, the coincidental increase in toluene emissions in Dickson County and the rise in cleft lip/cleft palate cases might have provided an opportunity to test such a hypothesis—had the resources and the willingness to explore those links existed. Such an investigation could potentially have benefited both the residents of Dickson County—who continue to be subject to large-scale air releases of toluene—and residents of many other communities experiencing similar releases.

Releases by Industry Sector and Parent Company

The cellulosic manmade fibers industry sector which includes the manufacture of acetate and rayon fibers for clothing—was the largest releaser of developmental and reproductive toxicants in 2000. The industry uses large amounts of carbon disulfide to treat cellulose in the manufacture of rayon. As of 1997, the U.S. Census Bureau listed six establishments nationwide in the cellulosic manmade fibers sector. In 2000, four reported releases of developmental toxicants to the air or water.

While the cellulosic manmade fibers sector was responsible for the greatest amount of developmental toxicant releases reported to TRI, other industries may have been responsible for significant amounts of unreported releases. For example, 49 facilities in the commercial gravure printing indus-

Table 12: Developmental Toxicant Releases by Industry Sector, 2000 (pounds)

Air	Water	Total
28,458,386	5,029	28,463,415
12,362,520	35	12,362,555
9,861,579	419	9,861,998
8,656,687 7,775,942	0 44,899	8,656,687 7,820,841
5,077,601	45,749	5,123,350
4,193,896	0	4,193,896
3,866,244	0	3,866,244
3,479,076	7	3,479,083
3.294.242	20,181	3.314.423
	28,458,386 12,362,520 9,861,579 8,656,687 7,775,942 5,077,601 4,193,896 3,866,244 3,479,076	28,458,386 5,029 12,362,520 35 9,861,579 419 8,656,687 0 7,775,942 44,899 5,077,601 45,749 4,193,896 0 3,866,244 0 3,479,076 7

try (which uses a specialized printing process to produce large print runs of magazines, packaging and other products) reported air or water releases of developmental toxicants to TRI in 2000—largely

Table 13: Reproductive	Toxicant Releases	by Industry Sector,
2000 (pounds)		

Industry	Air	Water	Total
CELLULOSIC MANMADE FIBERS	28,226,229	4,131	28,230,360
PLASTICS PRODUCTS, NEC	7,625,365	414	7,625,779
PETROLEUM REFINING	2,451,558	17,513	2,469,071
CARBON BLACK	2,020,946	0	2,020,946
INDUSTRIAL ORGANIC CHEMICALS, NEC PLASTICS MATERIALS AND RESINS	1,631,429 1,604,565	9,563 19,102	1,640,992 1,623,667
PAPER COATED + LAMINATED, PACKAGING	1,024,605	0	1,024,605
BLAST FURNACES AND STEEL MILLS	5 736,723	22,841	759,564
CYCLIC CRUDES AND INTERMEDIAT	ES 460,862	244	461,106
MINERALS, GROUND OR TREATED	434,940	0	434,940
NEC= Not Elsewhere Classified			

releases of toluene. However, as of 1997, there were a total of 453 facilities in the industry in the U.S., of which the vast majority (354) employed less than 20 full-time employees. Because TRI reporting is limited to facilities with 10 or more full-time employees that also meet other criteria, there is a good possibility that at least some of the facilities within the industry are releasing developmental toxicants that are not reportable to TRI.

Among parent companies, Lenzing Fibers Corp., a manufacturer of viscose rayon fibers, ranked first for releases of both developmental and reproductive toxicants in 2000.

SUSPECTED NEUROLOGICAL TOXICANTS

Even less is known about the ability of many toxic substances to harm the brain or the central nervous system. While some substances—such as lead and mercury—have long been known to affect central nervous system function, many other substances have not been fully tested for their neurological effects. There is no authoritative list of substances that are known to cause neurological problems. However, the nonprofit environmental organization, Environmental Defense has compiled a comprehensive list of substances suspected by government or academic researchers to cause neurological problems. (See "Methodology")

Table 14: Developmental Toxicant Releases by Parent Company, 2000 (pounds)

Parent Company	Total
LENZING FIBERS CORP.	16,960,549
ACORDIS US HOLDING INC.	11,257,980
QUEBECOR WORLD	11,213,550
R. R. DONNELLEY & SONS CO.	3,822,346
INTERTAPE POLYMER GROUP INC.	3,485,833
VISKASE COS. INC.	3,430,250
3M CO. INC.	3,362,792
DEVRO-TEEPAK	3,229,146
STM INC.	1,776,218
EXXON MOBIL CORP.	1,603,240

Table 15: Reproductive Toxicant Releases by Parent Company, 2000 (pounds)

Parent Company	Total
LENZING FIBERS CORP.	16,960,534
ACORDIS US HOLDING INC.	11,257,980
VISKASE COS. INC.	3,430,250
DEVRO-TEEPAK	3,229,146
3M	1,147,389
PHELPS DODGE CORP.	1,110,676
UCB INC.	1,023,140
HUTCHISON CORP.	836,531
CABOT CORP.	519,951
RENCO GROUP INC.	487,712

Releases by Chemical

In 2000, more than 1 billion pounds of suspected neurotoxicants were released directly to the air and to surface water. Among suspected neurological toxicants, methanol was released in the greatest quantities in 2000, followed by ammonia and tolu-

Table 16: Suspected Neurological Toxicant Releases,2000 (pounds)

Chemical	Air	Water	Total
METHANOL	183,176,226	3,753,931	186,930,157
AMMONIA	139,047,851	7,549,766	146,597,617
TOLUENE	81,257,581	40,497	81,298,078
HYDROGEN FLUORIDE	70,790,856	26,458	70,817,314
XYLENE (MIXED ISOMERS)	57,731,714	82,464	57,814,178
STYRENE	57,162,866	3,366	57,166,232
N-HEXANE	53,861,576	16,901	53,878,477
CHLORINE	45,598,134	281,508	45,879,642
CARBON DISULFIDE	40,584,960	3,704	40,588,664
METHYL ETHYL KETONE	34,051,889	40,693	34,092,582

Community Profile: El Paso, Texas

While heavy metals such as lead, mercury and their compounds do not show up among the most frequently released suspected neurotoxicants under TRI, the more than 1.5 million pounds of lead and lead compounds and 166,000 pounds of mercury and mercury compounds emitted in 2000 are significant. Lead and mercury have long been known for their potent effects on the brain and nervous system as well as for their persistence in the environment and the body.

Exposure to heavy metals has also lately been suspected as a potential trigger for the development of multiple sclerosis (MS). While the cause of MS is unknown, some suspect that environmental factors may play a role in development of the disease. A series of studies over the last half-century have suggested—though not proven—that exposure to a variety of metals may have been linked to the development of MS clusters in the U.S. and other countries.

Since the late 19th century, El Paso, Texas had been home to an ASARCO lead and copper smelter that also processed zinc and cadmium. During the early 1970s, public health officials documented extremely high levels of lead in the blood of area residents. In 1994, a former El Paso resident contacted state health officials with concerns about an apparent cluster of cases of multiple sclerosis among people who grew up in one neighborhood of the city from the 1940s through the 1960s.

A study of the El Paso cluster conducted by the Texas Department of Health and the ATSDR found that MS rates among graduates of one local elementary school appeared to be significantly elevated. While the study did not identify metals exposure as the cause of the MS cluster, it did cite biological evidence of high levels of metals exposure. The study was burdened by the lack of good data on the rate of MS that would be expected among a population similar to that in El Paso and by the difficulty of locating and gaining participation from many former students. The study concluded that more studies are needed of the role metals exposure may play as a risk factor for MS.¹⁵

The good news for El Paso residents is that the flow of metals into the region's air from the ASARCO facility has subsided. During the late 1980s and early 1990s, the facility released approximately 40,000 pounds of lead and lead compounds to the air per year. However, the plant ceased active operations in 1999, and air emissions of lead and lead compounds had dropped to approximately 1,500 pounds per year by 2000. But with emissions of lead, lead compounds and other metals continuing across the country, research into the links between metals exposure and multiple sclerosis is extremely important.

ene. Methanol is used as a solvent in adhesives, cleaners and inks, results from the combustion of plastics and other wastes, and is a product of wood pulping. At high levels of exposure, methanol can cause headaches, loss of muscle coordination, vision problems, blindness or death. Exposure to methanol can also result in nerve damage, and because the chemical is only slowly eliminated from the body, repeated low-level exposures can have severe effects.¹⁴

Releases by Location

The states of Texas, Tennessee and Louisiana ranked first through third for overall neurotoxicant releases. Zip code 84074 in Rowley, Utah—home to a Magnesium Corporation of America facilityranked first in overall releases, followed by zip codes in Lowland, Tennessee and Axis, Alabama.

From 1987 to 2000, approximately 23.1 billion pounds of suspected neurotoxicants were released nationwide. Zip code 84074 in Rowley, Utah again ranked first for suspected neurotoxicant releases, followed by zip codes in Axis, Alabama and Lowland, Tennessee. In the case of Rowley, home to the Magnesium Corporation of America, reported releases have declined steadily from a 1989 peak of 110 million pounds to a 2000 level of 42 million pounds. However, Magnesium Corporation's releases were still large enough to help make its Rowley zip code first in the nation for suspected neurotoxicant releases in 2000. (See Table 18, next page.)

City	State	Zip	Air	Water	Total
ROWLEY	UT	84074	42,154,522	0	42,154,522
LOWLAND	ΤN	37778	17,004,727	13,480	17,018,207
AXIS	AL	36505	11,404,211	2,683	11,406,894
DONALDSONVILLE	LA	70346	8,835,530	117,965	8,953,495
GEISMAR	LA	70734	7,960,054	132,351	8,092,405
ASHTABULA	ОН	44004	7,015,377	3,500	7,018,877
HOPEWELL	VA	23860	6,795,417	72,725	6,868,142
DANVILLE	IL	61832	5,562,440	6,271	5,568,711
PORT NECHES	ΤХ	77651	4,444,547	60,197	4,504,744
LOUISVILLE	KY	40216	4,410,452	1,401	4,411,853
BATON ROUGE	LA	70805	4,346,044	61,634	4,407,678
DECATUR	IL	62526	4,353,467	0	4,353,467
TEXAS CITY	ΤХ	77590	4,139,663	70,803	4,210,466
GEORGETOWN	SC	29440	4,029,426	39,615	4,069,041
ROME	GA	30165	3,955,201	29,238	3,984,438
COVINGTON	VA	24426	3,785,333	22,390	3,807,723
CAMDEN	AR	71701	3,741,494	28,403	3,769,897
HAMPTON	SC	29924	3,748,756	0	3,748,756
MARIETTA	ОН	45750	3,179,623	551,207	3,730,830
FERNANDINA BEACH	FL	32034	3,634,433	89,880	3,724,313

Table 17. Top 20 U.S. Zip Codes for Releases of Suspected Neurotoxicants, 2000 (pounds)

Table 18. Top 20 U.S. Zip Codes for Suspected Neurotoxicant Releases, 1987-2000 (pounds)

City	State	Zip	Air	Water	Total
ROWLEY	UT	84074	939,705,213	0	939,705,213
AXIS	AL	36505	451,000,594	429,087	451,429,681
LOWLAND	TN	37778	267,351,207	191,295	267,542,502
DONALDSONVILLE	LA	70346	239,983,714	6,360,895	246,344,609
KENAI	AK	99611	131,693,769	2,200,760	133,894,529
SAINT JAMES	LA	70086	125,729,071	1,678,705	127,407,776
ROCHESTER	NY	14652	113,410,106	4,382,175	117,792,281
HUTCHINSON	MN	55350	109,189,499	10	109,189,509
GEISMAR	LA	70734	106,114,477	2,720,023	108,834,500
COVINGTON	VA	24426	96,454,139	1,007,282	97,461,421
MARIETTA	ОН	45750	69,183,819	25,785,260	94,969,079
YAZOO CITY	MS	39194	90,290,686	109,439	90,400,125
FRONT ROYAL	VA	22630	87,463,385	68,200	87,531,585
DEER PARK	ΤХ	77536	79,212,088	1,910,237	81,122,325
HAMPTON	SC	29924	80,201,112	2,052	80,203,164
LOUISVILLE	KY	40216	78,936,019	41,392	78,977,411
FREEPORT	ΤХ	77541	72,861,136	6,105,287	78,966,423
NEW JOHNSONVILLE	TN	37134	75,338,495	2,977,326	78,315,821
CALVERT CITY	KY	42029	71,595,141	3,152,148	74,747,289
SAVANNAH	GA	31408	71,788,478	2,609,144	74,397,622

Contraction of the second seco

Fig. 4. Suspected Neurological Toxicant Releases by State, 2000

Releases by Industry Sector and Parent Company

For releases of suspected neurological toxicants, pulp mills, electric services providers and industrial organic chemicals facilities ranked first, second and third in 2000. A total of 81 pulp mills reported releases of suspected neurotoxicants to TRI in 2000, but due to inconsistencies in the identification of industry sectors, no comparison is possible with the number of facilities reported to exist nationwide by the Census Bureau.¹⁶

Methanol was the primary suspected neurotoxicant released by pulp mills. Hydrogen fluoride was the leading suspected neurotoxicant released by electric power plants, while facilities in the industrial organic chemicals sector released large amounts of ethylene, ammonia and toluene.

International Paper Co. led all parent companies for releases of suspected neurological toxicants in 2000, releasing large amounts of methanol. International Paper was followed by Renco Group Inc. (parent of Magnesium Corporation of America and other companies in the metals industry), which released large amounts of chlorine, and Georgia-Pacific Corp., which released large amounts of methanol. Table 19: Suspected Neurological Toxicant Releases byIndustry Sector, 2000 (pounds)

Industry	Air	Water	Total
PULP MILLS	75,256,626	6,812,285	82,068,912
ELECTRIC SERVICES	65,199,476	965,827	66,165,303
INDUSTRIAL ORGANIC CHEMICALS, NEC	50,817,506	1,600,853	52,418,359
PRIMARY NONFERROUS METALS, NEC	47,210,612	167,685	47,378,297
PAPERBOARD MILLS	44,932,457	1,299,062	46,231,519
NITROGENOUS FERTILIZERS	42,871,641	554,015	43,425,656
PETROLEUM REFINING	38,837,160	1,067,728	39,904,888
PAPER MILLS	35,252,953	2,160,067	37,413,020
MOTOR VEHICLES AND CAR BODIES CELLULOSIC MANMADE FIBERS	32,390,187 31,269,004	1,798 250,383	32,391,985 31,519,387
NEC= Not Elsewhere Classified			

Table 20: Suspected Neurotoxicant Releases by Parent Company, 2000 (pounds)

Parent Company	Total
INTERNATIONAL PAPER CO.	44,435,541
RENCO GROUP INC.	42,734,708
GEORGIA-PACIFIC CORP.	27,016,251
SMURFIT-STONE CONTAINER CORP.	17,098,371
LENZING FIBERS CORP.	17,018,207
WEYERHAEUSER CO.	13,977,796
E. I. DU PONT DE NEMOURS & CO. INC.	13,590,317
GMC	12,778,689
QUEBECOR WORLD	11,882,738
PCS NITROGEN INC.	11,620,291

SUSPECTED RESPIRATORY TOXICANTS

The link between exposures to toxicants such as asbestos fibers and cigarette smoke and disorders such as lung cancer and emphysema has long been recognized. In addition, exposure to air pollution has been linked to the onset of asthma attacks and, in one recent study, to the development of asthma itself.¹⁷ As is the case with neurological disorders, the respiratory impacts of various toxic exposures have been subject to less study, although again, Environmental Defense has compiled a list of suspected respiratory toxicants based on a variety of sources.

Releases by Chemical

In 2000, more than 1.7 billion pounds of suspected respiratory toxicants were released directly to the air by facilities that report to TRI. Acid aerosols of hydrochloric acid were released in the greatest quantities, representing one of every three pounds of suspected respiratory toxicants released in 2000. Hydrochloric acid is released to the air in large quantities by electric power plants and is also used in various disinfection products. Hydrochloric acid is highly corrosive and irritating to the eyes and the respiratory tract. Chronic occupational exposure has been linked to gastritis, chronic bronchitis and dermatitis in workers, while long-term, low-level exposure has been linked to dental erosion. Little to no information exists on any links between hydrochloric acid and developmental, reproductive or carcinogenic effects in humans.

Releases by Location

The states of Ohio, North Carolina and Georgia ranked first through third in respiratory toxicant releases. Zip code 84074 in Rowley, Utah ranked first in the nation for air releases of suspected respiratory toxicants, followed by zip codes in Semora, North Carolina and Shelocta, Pennsylvania.

Since the inception of the TRI program, approximately 23.5 billion pounds of suspected respiratory toxicants have been released into the nation's air. Zip code 84074 in Rowley, Utah ranks first by far

Table 21: Suspected Respiratory Toxicant	í.
Releases, 2000 (pounds)	

Chemical	Air Emissions
HYDROCHLORIC ACID (ACID AEROSOLS)	645,632,582
METHANOL	183,176,226
SULFURIC ACID (ACID AEROSOLS)	148,795,976
AMMONIA	139,047,851
TOLUENE	81,257,581
HYDROGEN FLUORIDE	70,790,856
XYLENE (MIXED ISOMERS)	57,731,714
STYRENE	57,162,866
N-HEXANE	53,861,576
CHLORINE	45,598,134

Table 22. Top 20 U.S. Zip Codes for Air Emissions of
Suspected Respiratory Toxicants, 2000 (pounds)

City	State	Zip	Air Emissions
ROWLEY	UT	84074	43,936,667
SEMORA	NC	27343	19,217,246
SHELOCTA	PA	15774	18,439,349
MANCHESTER	OH	45144	18,408,178
CARTERSVILLE	GA	30120	17,828,862
PENSACOLA	FL	32514	16,635,858
NEW JOHNSONVILLE	TN	37134	15,508,636
MOUNDSVILLE	WV	26041	14,582,839
TERRELL	NC	28682	14,546,965
WINFIELD	WV	25213	14,526,137
BALTIMORE	MD	21226	12,635,407
BELEWS CREEK	NC	27009	11,360,090
NEW HAVEN	WV	25265	10,994,190
MONROE	MI	48161	10,788,407
DEMOPOLIS	AL	36732	10,203,258
GULFPORT	MS	39502	9,965,445
ROXBORO	NC	27573	9,591,406
BRILLIANT	OH	43913	9,584,560
DONALDSONVILLE	LA	70346	8,840,440
MASONTOWN	PA	15461	8,777,480

for respiratory toxicant releases (mostly air emissions of chlorine), followed by zip codes in Donaldsonville, Louisiana and Rochester, New York. It is important to note that, had electric power plants been included in TRI prior to 1998, communities with electric power plants would likely rate near the top of this list. (See Table 23, next page)

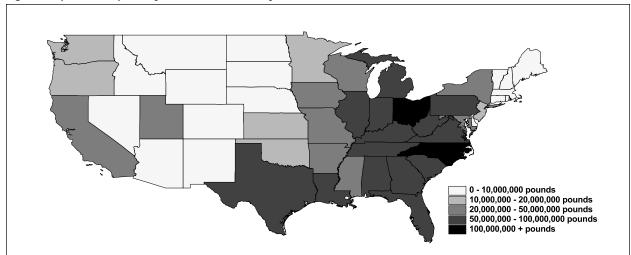


Fig. 5. Suspected Respiratory Toxicant Releases by State, 2000

Table 23. Top 20 U.S. Zip Codes for Suspected Respiratory Toxicant Releases, 1987-2000 (pounds)

City	State	Zip	Air Emissions
ROWLEY	UT	84074	1,012,784,992
DONALDSONVILLE	LA	70346	240,025,193
ROCHESTER	NY	14652	145,654,705
KENAI	AK	99611	131,397,184
SAINT JAMES	LA	70086	126,894,402
COVINGTON	VA	24426	113,875,976
HUTCHINSON	MN	55350	108,445,309
KINGSPORT	TN	37662	97,256,136
GEISMAR	LA	70734	93,497,637
YAZOO CITY	MS	39194	90,290,686
LOUISVILLE	KY	40216	84,880,480
HAMPTON	SC	29924	80,576,776
SAVANNAH	GA	31408	80,089,863
DEER PARK	ТΧ	77536	75,405,958
FREEPORT	ТΧ	77541	72,660,174
LELAND	NC	28451	71,829,525
BLYTHEVILLE	AR	72315	70,058,787
WILMINGTON	NC	28401	68,225,666
SHELOCTA	PA	15774	67,158,125
BATON ROUGE	LA	70805	66,163,263

Releases by Industry Sector and Parent Company

The electric services industry sector, which includes electric power plants, was far and away responsible for the greatest releases of suspected respiratory toxicants in 2000. A total of 612 facilities in the electric services sector reported air releases of suspected respiratory toxicants in 2000. In 1997, the U.S. Census Bureau counted 6,212 facilities in the sector, of which 834 were engaged in the generation of electricity from fossil fuels, which appears to be responsible for the majority of respiratory toxicant releases from the sector. The pulp and paper industries also ranked high for respiratory toxicant releases to the nation's air.

Table 24: Suspected Respiratory Toxicant Releases by Industry Sector, 2000 (pounds)

Industry	Air Emissions
ELECTRIC SERVICES	773,948,940
PULP MILLS	87,076,027
PAPERBOARD MILLS	51,247,786
PRIMARY NONFERROUS METALS, NEC	49,308,665
INDUSTRIAL ORGANIC CHEMICALS, NEC	46,648,437
PAPER MILLS	46,111,887
PETROLEUM REFINING	44,310,309
NITROGENOUS FERTILIZERS	43,631,655
MOTOR VEHICLES AND CAR BODIES	36,010,314
PLASTICS MATERIALS AND RESINS	26,852,371
NEC= Not Elsewhere Classified	

Electric utilities—Southern Co., American Electric Power and Progress Energy—led all parent companies in emissions of suspected respiratory toxicants, with the Tennessee Valley Authority, a public agency involved in electricity generation, ranking fourth.

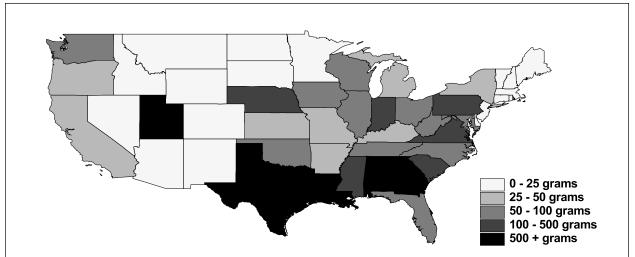
Table 25: Suspected Respiratory Toxicant Releases by
Parent Company, 2000 (pounds)

Parent Company	Total
SOUTHERN CO.	91,964,317
AMERICAN ELECTRIC POWER	75,971,190
PROGRESS ENERGY	53,267,446
U.S. TENNESSEE VALLEY AUTHORITY	51,436,265
INTERNATIONAL PAPER CO.	49,524,101
RENCO GROUP INC.	44,055,761
DUKE ENERGY CORP.	43,634,338
CINERGY CORP.	30,032,920
RELIANT ENERGY INC.	29,156,177
GEORGIA-PACIFIC CORP.	29,539,458

DIOXINS

The chemical class known as dioxins was added to the Toxics Release Inventory beginning in the 2000 reporting year. Long regarded as among the most toxic chemicals known to science, dioxins have been the subject of a decade-long "reassessment" of their toxicity by EPA. Drafts of the EPA's reassessment have reaffirmed the conclusion that dioxins are potent toxicants and may cause cancer, developmental and reproductive impacts. In fact, the EPA estimates that the cancer risk from dioxin in levels already present in the general public is approximately 1-per-1,000.¹⁸ Other sources have identified at least one member of the dioxin family as a potential neurological and respiratory toxicant, making it one of the few substances thought to be tied to all five health impacts studied in this report.

Dioxins are treated separately from other chemicals in this report because the quantities of dioxins that are thought to be dangerous to human health are extremely minute. As a result, EPA requires facilities to report their dioxin releases to TRI in units of grams, as opposed to pounds. Including dioxins with other toxicants would tend to downplay the severe consequences that even small releases of dioxins can have on human health.


Releases by Location

Facilities nationwide reported releasing more than 7,000 grams of dioxin to the air and water during 2000. Zip code 30119 in Carrollton, Georgia

Table 26. Top 20 U.S. Zip Codes for Dioxin Releases, 2000 (grams)

City	State	Zip	Air	Water	Total
CARROLLTON	GA	30119	965	0	965
DECATUR	AL	35609	807	0	807
PLAQUEMINE	LA	70765	3	746	749
FREEPORT	ТΧ	77541	141	562	703
ROWLEY	UT	84074	623	0	623
FREMONT	NE	68025	429	0	429
NEW BRAUNFELS	ТΧ	78132	147	0	147
GRENADA	MS	38960	0	117	117
TELL CITY	IN	47586	107	0	107
DRAVOSBURG	PA	15034	103	0	103
GREGORY	ТΧ	78359	100	2	101
PLAQUEMINE	LA	70764	9	83	91
DEER PARK	ΤX	77536	52	33	85
RICHMOND	VA	23234	80	0	80
LAKE CHARLES	LA	70601	2	75	77
HOLLY HILL	SC	29059	75	0	75
BATON ROUGE	LA	70805	62	0	62
ARDMORE	OK	73401	56	0	56
FRIENDLY	WV	26146	51	0	51
SCOOBA	MS	39358	0	50	50

Fig. 6. Dioxin Releases by State, 2000

(home of Southwire Co., a cable and wire manufacturer) saw the greatest releases of dioxins, followed by zip codes in Decatur, Alabama and Plaquemine, Louisiana. It is noteworthy that a second zip code in Plaquemine ranks 12th in dioxin releases—combining the two zip codes would increase the town's ranking to second overall. Texas led all states for dioxin releases in 2000, followed by Louisiana and Alabama.

Releases by Industry Sector and Parent Company

The chlorine and alkali industry sector ranked first overall in dioxin releases to air and water, followed by the secondary metals industry and the noncellulosic organic fibers industry, which manufactures nylon and polyester fibers and filaments. Electric power plants were also a major source of dioxins. Eleven facilities within the alkalies and chlorine manufacturing sector reported releases of dioxin to TRI in 2000, compared with 39 facilities listed within the industry sector in the 1997 Economic Census.

Dow Chemical led all parent companies for releases of dioxins, emitting more than 1.4 kilograms of dioxin to the air and surface water, followed by Southwire Co. and Solutia Inc. (formerly Monsanto).

Table 27: Dioxin Releases by Industry Sector, 2000 (grams)

Industry	Air	Water	Total
ALKALIES AND CHLORINE	162	1,422	1,583
SECONDARY NONFERROUS METALS	1,098	0	1,098
ORGANIC FIBERS, NONCELLULOSIC	808	0	808
ELECTRIC SERVICES	677	0	677
PRIMARY NONFERROUS METALS, NEC	624	0	624
ELECTRIC AND OTHER SERVICES COMBINED	470	0	470
CEMENT, HYDRAULIC	447	1	448
WOOD PRESERVING	12	357	369
INDUSTRIAL ORGANIC CHEMICALS, NEC	186	87	272
PULP MILLS	60	115	175
NEC= Not Elsewhere Classified			

Table 28: Dioxin Releases by Parent Company,2000 (grams)

Parent Company	Total
DOW CHEMICAL CO.	1457
SOUTHWIRE CO.	965
SOLUTIA INC.	807
RENCO GROUP INC.	628
CITY OF FREMONT DEPARTMENT OF UTILITIES	429
KOPPERS INDS. INC.	163
TXI OPS. L.P.	146
OCCIDENTAL PETROLEUM CORP.	140
COGENTRIX ENERGY INC.	127
BUDD CO.	107

Community Profile: Calcasieu Parish, Louisiana

In the first year of TRI reporting of dioxin releases, Calcasieu Parish, Louisiana ranked 13th among U.S. counties for releases to air and water. Nine facilities within the parish reported releases of dioxin, with the majority of releases coming from the PPG Industries facility in Lake Charles. Yet, long before the release of the 2000 TRI data, residents of the parish were already aware of the potential impact of dioxin releases on their health.

In 1997, lawyers gathering information for a class action lawsuit against the former owner of a chemical plant in the area tested the blood of 11 people in the parish. Three of the samples came back with unusually high levels of dioxin. To confirm the results, the lawyers tested a pooled blood sample taken from a local hospital. That sample, too, found levels of dioxin that were either above or at the high end of the national average.¹⁹

In late 1998, the ATSDR confirmed the earlier test results, and a year later, released the results of follow-up blood testing that found average levels of dioxin three times the national average. The levels were among the highest ever reported in the U.S. for a non-occupational exposure.²⁰ While a subsequent study by Louisiana state officials did not find overall elevated rates of cancer in the parish, it did note significantly elevated levels of lung cancer and soft tissue cancers, both of which have been linked to dioxin exposure.²¹

The situation in Calcasieu Parish is unusual in that exposure to dioxin has been confirmed through biological monitoring—demonstrating the potential usefulness of biological monitoring in making connections between industrial releases of toxic chemicals and the potential for future health effects.

MANY TOXIC RELEASES GO UNREPORTED

The Toxics Release Inventory provides the best source of information on the release of toxic chemicals nationwide. However, TRI does not provide a complete picture of toxic releases to the environment. Until the mid-1990s, TRI tracked only the release of approximately 300 toxic substances. That list was expanded to more than 600 chemicals in 1994 and several classes of industries—such as electric utilities and solid waste incinerators-that had previously been exempt from reporting were added to the program beginning in the 1998 reporting year. The late 1990s also saw the closing of loopholes that had allowed many releases of persistent bioaccumulative substances and dioxins-which can be extremely toxic at low levels of exposureto escape reporting.

Yet many chemicals and some industries remain exempt from the requirements of TRI. Major sources of pollution, such as airports, oil wells and medical waste incinerators, remain exempt from reporting under the law. And despite the recent expansion in the number of chemicals covered by the program, TRI still covers less than one percent of the estimated 80,000 chemicals in commerce today.

TRI also requires reporting only by facilities with 10 or more full-time employees. In addition, with the exception of persistent bioaccumulative toxics (PBTs), reporting is limited to those facilities that "manufacture or process" more than 25,000 pounds of a given chemical per year, or those that "otherwise use" more than 10,000 pounds of a chemical during a single year. The result is that many smallerscale users of toxic chemicals—such as print shops and dry cleaners—are exempt from reporting. In addition, there is no federal program for reporting of toxic chemicals included in consumer products another potential source of exposure for citizens.

The figures on toxic releases presented above, therefore, underestimate the potential health threats posed by toxic chemicals in the United States. Indeed, the releases reported above represent only the tip of the iceberg.

TRENDS AND LESSONS FROM THE DATA

TRENDS IN TOXIC RELEASES

While a detailed evaluation of trends in TRI is both difficult (due to changes in reporting rules over time) and beyond the scope of this report, two major trends are apparent in the data—a decline in the amount of toxic releases reported to TRI and an overall shift in the geographical distribution of toxic releases within the U.S.

Decline in Toxic Releases Shows Impact of TRI Reporting

Trends in the release of toxic chemicals by TRI facilities appear to be headed in the right direction: down. Between 1995 and 2000, releases to air and water by original TRI industries of carcinogenic chemicals listed over that entire period declined by 41 percent. Developmental toxicant releases were down by 47 percent; reproductive toxicant releases by 49 percent, releases of suspected neurological toxicants by 31 percent and releases of suspected respiratory toxicants by 23 percent.

While the exact reason for this decline is unknown, several factors are likely at play. First is an apparent reduction in the number of facilities reporting to TRI. Between 1995 and 1998, for example, the number of companies reporting releases to TRI declined by nearly 6 percent.²² Second, since the inception of TRI in 1987, many companies have bowed to public concern by reducing their toxic emissions. Finally, regulatory action may have played a role in some companies' reductions in toxic releases.

Toxic releases have also declined steadily in many communities that rank near the top of the 1987-2000 list, but the quantity of such releases remains significant. And in some communities, toxic releases have remained largely the same—or have even increased—over the last 14 years.

Yet the downward trend in toxic releases under TRI—while promising—should not be cause for complacency, mainly because releases are still very high and TRI captures so little of the picture. For example, as noted above, the commercial printing sector ranks high for releases of developmental toxicants. Yet, within just one sector of the industry the gravure printing sector—as much as 80 percent of all establishments nationwide may not be reporting their toxic releases to TRI either because they are too small or their use or discharge of toxic substances does not meet TRI reporting thresholds. Without a solid awareness of how these local industries are performing, it is difficult to say with certainty whether communities generally face more or less jeopardy from developmental toxicants than they did several years ago.

Even for those industries and chemicals covered by TRI, the downward trend in direct water and air releases does not necessarily mean that the quantity of toxic chemicals ultimately finding their way into the environment has decreased. In fact, while direct releases of toxic chemicals declined 8.4 percent between 1999 and 2000, the amount of toxic waste generated by industry actually *increased* by more than 25 percent.²³ These toxic materials must be disposed of somehow, but it appears that "somehow" is increasingly in the form of on-site "treatment" or "recycling." The effectiveness of these measures in preventing exposure likely varies widely and cannot be ascertained from a simple review of the data.

Moreover, there is no way to know whether some industries have chosen to replace certain chemicals that are reportable to TRI with others that are not, or with new substances that may not only not be reportable, but whose health effects have not been thoroughly studied. While this substitution effect seems unlikely to have a major impact on overall toxic releases, the desire to escape public pressure due to TRI reporting or the desire to adopt new technologies could both be significant motivating factors.

Finally, despite the recent decline in toxic emissions, millions of pounds of toxic substances continue to be discharged into the nation's air and water, with little clear understanding of how those substances might affect our health. And because substances such as lead, mercury and dioxin can persist for long periods in the environment and in the body, releases that occurred long ago remain a matter of public health concern today. Until emissions of these substances are dramatically reduced across the country, the potential impact on health remains significant.

Geographic Distribution

While industries across the country have reduced their TRI-reportable releases of toxic chemicals, progress appears to be stronger in some regions of the country than in others. An analysis of carcinogen releases to air and water by original TRI industries (those covered by the program since 1987) shows a relative increase in the percentage of total TRI releases in some regions—particularly the "Sunbelt"—with a corresponding decline in older, northern industrial states. total in 2000. Meanwhile, releases in the "Sunbelt" (regions 4 and 6) increased from 32.6 percent of the total in 1987 to 47.6 percent in 2000.

The trend is even more pronounced with regard to other categories of toxicants. In 1987, original TRI industries in the Southeast and Southcentral regions accounted for 41 percent of all developmental toxicant releases nationwide. By 2000, releases by original industries in these regions made up 59 percent of the national total. A similar trend can be seen in these two regions for releases of reproductive toxicants (from 51 percent of the national total in 1987 to 78 percent in 2000), suspected neurological toxicants (from 41 percent to 50 percent), and suspected respiratory toxicants (from 40 percent to 48 percent). While an historical comparison for dioxin releases

Table 29. Carcinogen Releases by EPA Region for Original TRI Industries, 1987 vs. 2000

EPA Region	Description	Percent of Total 1987	Percent of Total 2000
1	New England (CT, MA, ME, NH, RI, VT)	6.5%	2.8%
2	New York/New Jersey/Other (NY, NJ, PR, VI)	10.0%	5.6%
3	Mid-Atlantic (DE, MD, PA, VA, WV)	10.8%	11.3%
4	Southeast (AL, FL, GA, KY, MS, NC, SC, TN)	18.7%	32.1%
5	Midwest (IL, IN, MI, MN, OH, WI)	25.0%	21.1%
6	Southcentral (AR, LA, OK, NM, TX)	13.9%	15.5%
7	Plains (IA, KS, MO, NE)	6.2%	3.8%
8	Upper Plains/Mtn. West (CO, MT, ND, SD, UT, WY)	1.0%	1.2%
9	Southwest/Pacific (AZ, CA, HI, NV and Pacific territories)	4.6%	2.3%
10	Northwest (AK, ID, OR, WA)	3.4%	4.3%

Among the 10 EPA regions (which closely correspond to geographic regions of the country), Region 4 (the Southeast) posed the greatest relative gain in carcinogen releases, increasing from 18.7 percent of all TRI carcinogen releases to air and water in 1987 to nearly one-third of all releases in 2000. The Southcentral region, the Northwest, and the Mid-Atlantic region also saw significant relative gains. By contrast, the Northeastern states (including New England and the New York/New Jersey region), the Plains states, the Midwest and the Southwest/Pacific region all saw stronger downward trends in carcinogen releases.²⁴

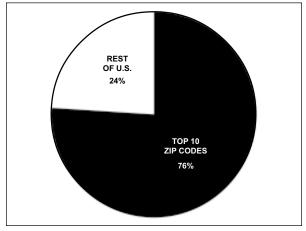
To paint the picture even more clearly, carcinogen releases from original TRI industries in what could roughly be termed the "Rust Belt" (including regions 1, 2, 3 and 5) declined from 52.4 percent of the total in 1987 to 40.8 percent of the national is impossible, the Sunbelt dominates in current releases, accounting for 67 percent of all air and water dioxin releases in 2000.

The good news is that toxic releases in all 10 EPA regions were lower in 2000 than they were in 1987, despite the addition of a substantial number of chemicals to TRI reporting. The geographical analysis shows, however, that the decline in carcinogen releases was much slower in the 13 Southeastern and Southcentral states than it was in other regions of the country.

This trend comports with the well-known movement of manufacturing activity from north to south over the past two decades. However, it also should be a source of concern for southern residents. Much as industrialization in the Northeast and Midwest has led to a legacy of public health and environmental problems from which the region has yet to recover, the same potential now seems to exist in the South.

LESSONS FROM THE DATA

The data that exist on toxic releases to the environment—as reported to TRI and analyzed in this report—point to a number of conclusions.


Toxic Releases Are a Serious Problem

The 2000 TRI data show that hundreds of millions of pounds of chemicals with proven or suspected links to serious health problems continue to be released into the environment each year. In terms of sheer quantity, these releases appear to be concentrated within a relatively small number of localities.

In 2000, for example, 76 percent of all air and water releases of reproductive toxicants reported to TRI occurred within just 10 zip codes. (See Fig. 7.) The top 10 zip codes in each health-effects category received 65 percent of dioxin releases, 32 percent of developmental toxicant releases, 14 percent of all carcinogen releases, and 11 percent of national releases of suspected neurological and respiratory toxicants.

Moreover, historical TRI data show that many of these communities have been subjected to largescale toxic releases year after year for more than a decade and a half. Over the 1987-2000 period, the top 10 zip codes in each category received 68 percent of reproductive toxicant releases, 26 percent of developmental toxicant releases, 11 percent of sus-

pected neurotoxicant releases, 10 percent of carcinogen releases, and 9 percent of all air releases of suspected respiratory toxicants. While the impact of these continued releases varies depending on the degree of exposure, the persistence of the chemicals and the way they impact the body, the consistent release of large amounts of these substances is troubling.

Clearly, communities that experience massive discharges of substances like dichloromethane, toluene, carbon disulfide and methanol have every right to be concerned about how those emissions might impact their health. And our public health system owes it to these communities to investigate those links vigorously.

Yet, it is not only communities that receive highvolume releases of toxic chemicals that have reason for concern. Equally disturbing is the continued release of lesser amounts of persistent toxicants such as lead (275,000 pounds released to air and water in 2000), lead compounds (1.3 million pounds), mercury (30,000 pounds), mercury compounds (136,000 pounds) and dioxins (7,000 grams) whose toxicity is relatively well understood. In contrast to the vast majority of toxic chemicals, about whose health effects we know little, we have ample evidence of the potential dangers posed by even small amounts of lead, mercury and dioxin in air, water, soil and food. Science has shown that substances such as mercury and dioxin can make their way into the human body from sources hundreds or thousands of miles away from the location of their release into the environment. The continued air and water releases of these substances suggest a serious and continuing threat to public health nationwide.

Also troubling is what the TRI data tell us about land disposal of these persistent substances and compounds. While land releases were not examined in this report (See "Methodology"), it is important to note that the mining industry is responsible for the land disposal of hundreds of millions of pounds of lead and arsenic compounds and other toxicants each year. These discharges may or may not have an immediate impact on public health, but their impact is almost certain to be felt in years and decades to come.

A Few Industry Sectors Are Often Responsible for the Bulk of Toxic Releases

Within each category of toxic releases, a small number of industry sectors are generally responsible for the bulk of releases. The plastic foam products industry sector was responsible for 19 percent of all air and water releases of cancer-causing chemicals in 2000. The cellulosic manmade fibers sector accounted for 21 percent of developmental and more than half of all reproductive toxicant releases. The electric services industry (which includes power plants) released 46 percent of all suspected respiratory toxicants while the chlorine and alkali industry sector was responsible for 23 percent of all dioxin releases. Pulp mills were responsible for the greatest releases of suspected neurological toxicants.

These data suggest that a regulatory approach that focuses on improving environmental peformance by industry sectors—especially through toxics use reduction—could reap great dividends in reducing toxic emissions. Second, they may provide clues about the toxic burden faced by communities in the vicinity of smaller facilities in those industry sectors that are not required to report to TRI.

As noted earlier, TRI covers only a small fraction of total toxic releases into the environment. For many industry sectors—such as dry cleaning and commercial printing—in which activity is dispersed among thousands of facilities, each with only a few full-time employees, the percentage of releases reported to TRI is small. Knowing which industry sectors are responsible for large-scale toxic releases could help communities determine which facilities in their communities could be responsible for smaller-scale releases that are not reportable to TRI.

Toxic Chemical Disposal Practices Are Changing

An analysis of historical TRI data shows that patterns in the disposal of toxic chemicals are changing. There has been a substantial and undeniable drop over time in the amount of direct toxic releases to air and water by industries covered by TRI. Unfortunately, however, the generation of toxic waste appears to be increasing. From 1998 to 2000, the total amount of production-related waste generated by TRI facilities increased more than 25 percent, from 29.3 billion pounds in 1998 to 37.9 billion pounds in 2000. EPA reports that the bulk of the increase was in the amount of waste "treated" or "recycled" on-site with most of that increase coming at two chemical manufacturing facilities, one in Louisiana and one in Alabama.²⁵

Worth noting is that the EPA has not produced final guidance and definitions of what constitutes "recycling" and other recovery methods. Recycling can include recovering metals, solvents, acids, and energy. Such recovery operations are a source of pollution and contamination in many American communities. It is important to remember that reducing the amount of toxic waste created at the source means less waste that must be treated, burned, disposed, or recycled—and less pollution and contamination that invariably accompanies these recycling and recovery activities.

Clearly, the most effective way to prevent toxic waste from making its way into the air and water is to not create it in the first place. American industry, taken as a whole, appears to be failing in that task. As a result, citizens must trust industry to properly manage and dispose of the toxic wastes created—a trust that has not always been upheld in the past, as evidenced by the tens of thousands of toxic waste sites nationwide.

Equally important is the shift in the geographic distribution of toxic releases nationwide. Over the last decade and a half, the "center of gravity" for toxic releases has shifted dramatically from the Northeast and Midwest to the Sunbelt. While overall toxic releases to air and water have declined in all regions, the southern states have seen the smallest declines. It is beyond the scope of this report to speculate as to why southern states may be having a more difficult time reducing toxic releases, but it is imperative that southern policy-makers investigate and address the issue.

Making the Link Between Toxics and Health

In recent years, both the general public and the scientific community have become increasingly aware of the role environmental factors—including exposure to toxic substances—can have on health. Yet, in many important respects, our understanding of how the release of toxic substances into our environment can affect human health is inadequate.

Nearly 90 percent of Americans believe that environmental factors such as pollution can cause disease or health problems.²⁶ These concerns are evidenced in the more than 1,000 calls that are placed to public health officials each year regarding suspected clusters of disease. In most cases in which a cause is initially suspected by the public, local industrial contamination, or air, water or agricultural pollution are thought to be to blame.²⁷

Even as well-publicized incidents like those in Love Canal, N.Y., and Woburn, Mass. have raised public fears about the impacts of toxic contamination, scientists have worked to better define the role toxic exposures may play in the development of chronic disease. In many cases, current science suggests that both genetics and environmental exposures (including lifestyle choices such as diet and tobacco use) play important roles in the development of a variety of diseases.

For example, a 2000 study published in the New England Journal of Medicine found that environmental and lifestyle factors appear to play a greater role in the development of most cancers than genetics.²⁸ Scientists now estimate that about three percent of all developmental defects can be attributed exclusively to toxic exposures.²⁹ A recent California government study found that children who play sports and are exposed to high levels of ozone may be more likely to develop asthma, while another study has linked maternal exposure to certain air pollutants with increased rates of some birth defects.³⁰

Other recent studies have attempted to quantify the risks posed by levels of various toxic substances to which Americans have been exposed. The EPA's National Air Toxics Assessment, released in 2002, found that the average cancer risk due to lifetime exposure to 33 toxic pollutants in the outdoor air was 1-in-2,600—500 times higher than the EPA's benchmark acceptable risk of 1-in-1,000,000.³¹ More than 200 million people, according to the EPA study, lived in census tracts where the lifetime cancer risk from exposure to air toxics exceeded 1-in-100,000 in 1996, while nearly the entire U.S. population may have faced an elevated risk of respiratory irritation.³² Similarly, the EPA's draft dioxin reassessment estimates that the cancer risk from dioxin in levels already present in the general public is approximately 1-in-1,000.³³

These recent studies have added to a longstanding body of evidence that has linked exposure to lead, asbestos, mercury, vinyl chloride, PCBs and a host of other substances with severe health problems. But a lack of complete information about the toxicity of thousands of chemical substances—combined with poor tracking of human exposure to those substances and inconsistent tracking of chronic disease incidence—suggests that the health effects that have been already identified by scientists may represent only the tip of the iceberg.

MANY CHEMICALS LACK PUBLICLY AVAILABLE TOXICITY DATA

Public information on the toxicity of chemicals even those used and released in the greatest amounts—is scarce. In 1998, EPA reported that, of the 2,800 chemicals that are produced or imported to the U.S. in volumes of 1 million pounds or more annually, 43 percent had no publicly available screening-level toxicity data at all. Only seven percent of these "high production volume" chemicals had a complete set of publicly available basic screening data that evaluated acute toxicity, chronic toxicity, developmental and reproductive toxicity, mutagenicity, environmental toxicity and environmental fate.³⁴ Even those chemicals whose releases are most agressively monitored—those for which reporting of releases is required under the EPA's Toxics Release Inventory—crucial pieces of the testing picture are unavailable to the public. Of 91 high production volume chemicals with 1995 TRI releases of 1 million pounds or more, 26 percent were missing at least one of the six basic screening-level tests thought to be needed to evaluate toxicity.

Moreover, screening-level data on toxicity represents only the bare minimum of information that is needed to gauge the real-world impact of toxic exposures on health. In addition, because the effects of toxic substances on the body are complex and influenced by such questions as level of exposure, route of exposure and timing of exposure, EPA acknowledged that "these tests do not fully measure a chemical's toxicity."³⁵

The lack of public information on high production volume chemicals is in part due to EPA's lack of authority to compel testing of chemical substances. Under the Toxic Substances Control Act of 1976 (TSCA), EPA must make several findings before it can require testing of a chemical that was already in use before the law took effect. EPA must find that the chemical "may present an unreasonable risk of injury to health or the environment," that the chemical is produced or imported in substantial quantities and either enters the environment or results in human exposure, that existing data are inadequate for risk assessment, and that testing is necessary.³⁶ The policy represents a "Catch-22" in which the EPA must simultaneously determine that existing data are inadequate and that those data demonstrate a potential hazard. Another fundamental problem with this policy approach is that the burden rests on EPA to make the findings, and with 80,000 chemicals on the market, the agency does not have the time or resources to do so. Instead, industry should be required to submit testing data for any chemical on the market, as is required for pharmaceutical products.

The lack of testing information—combined with flaws in TSCA itself—makes it difficult for EPA to ban or restrict the use of a chemical that poses hazards to the public. In order to regulate a toxic chemical under TSCA, EPA must show that the chemical poses an "unreasonable risk" of human or environmental harm, and that other federal regulations are inadequate to protect the public. EPA must also consider whether the benefits of regulating the chemical exceed the costs to the economy.³⁷

In practice, these provisions set an almost impossibly high legal bar for EPA to meet. A 1994 General Accounting Office report found that, as of that time, EPA had used its authority under TSCA to regulate only nine toxic chemicals. GAO's reviewers found that "TSCA's unique authorities to limit the manufacturing, distribution and use of toxic chemicals could be important tools in a comprehensive program for these chemicals. However, the act's legal standards are so high that they have usually discouraged EPA from using these authorities."³⁸

DEGREE OF HUMAN EXPOSURE UNKNOWN

The data collected through the Toxics Release Inventory and the research that has been done to identify the health threats posed by various toxic substances are enough to identify facilities whose releases to the environment pose a potential danger to public health. However, they are not enough to demonstrate that a particular toxic emission can cause—or has caused—a specific health impact, or to adequately assess human exposure to TRI chemicals.

For communities to get the full picture of how toxic emissions may impact their health, they need to also have access to information on exposure patterns.

Routes of Exposure

Unfortunately, while TRI data give us an idea of the amount of various toxicants that are released into the environment, they do not tell us where those substances end up, or which of those substances might find their way into our bodies.

Humans are potentially exposed to toxic chemicals in a variety of ways—through air, water and food; through environmental exposures, consumer products and exposures on the job. When looking at data from TRI, it is important to remember that what goes up does not necessarily come down in the same place; that chemicals emitted to the air may cause health effects in the immediate area or hundreds of miles away—or may be dispersed or broken down to the point that no health effects ensue. The same is true of discharges to surface waterbodies.

Unfortunately, efforts to identify the degree of toxic substances to which Americans have been exposed have been few. Several federal surveys conducted by the Centers for Disease Control and Prevention (CDC), the Environmental Protection Agency (EPA), and National Institute for Environmental Health Sciences (NIEHS) collect information and biological samples from a limited number of individuals and analyze them for a limited number of toxic substances, such as lead, mercury, volatile organic compounds and pesticides. However, a 2000 General Accounting Office (GAO) report found that the EPA and CDC surveys included only 6 percent of the 1,456 potentially damaging chemicals identified by GAO.³⁹

In recent years, some progress has been made in monitoring toxic exposures. In 2001, the CDC released its first-ever report on the average levels of toxic substances in the bodies of Americans. For 24 of the 27 chemicals studied (the exceptions being lead, cadmium and cotinine, a breakdown product of nicotine), the CDC study was the first effort to understand levels of toxic exposure. New substances evaluated included metals, pesticide metabolites and metabolites of phthalates, compounds commonly used in consumer products such as soap, shampoo and plastics. CDC will release in early 2003 an updated exposure report with data on more than 100 chemicals.

Information such as that presented in the CDC's report is needed to assess levels of toxic chemical exposure and to evaluate the effectiveness of measures to reduce toxic exposures. For example, because the CDC has tracked levels of lead and cotinine in blood over time, the agency was able to conclude—based on the most recent round of testing—that public initiatives to reduce exposure to

lead and secondhand smoke have indeed been effective.

Yet, even the studies currently being conducted by CDC are not of sufficient size to determine whether residents of particular towns, counties or states are exposed to higher or lower amounts of toxic chemicals. Thus, while these studies play an important benchmarking role, they have little to no utility in measuring local toxic exposures.

TRACKING OF CHRONIC DISEASE IS LIMITED

Among the information needed to gauge the impact of toxics on health is a detailed understanding of rates of chronic disease in a community. Without understanding of rates of cancer, birth defects, asthma and other chronic disorders, it is extremely difficult and costly to investigate how toxic exposures may be affecting a community's health.

Unfortunately, states vary widely in their ability to monitor rates of even the most aggressively tracked diseases—such as cancer—while most states have no system at all to monitor cases of diseases such as Alzheimer's, autism, multiple sclerosis and lupus. Only three states—California, Iowa and Massachusetts—possess tracking systems for cancer and birth defects that meet the highest standards of quality as well as any system at all for the tracking of asthma. Only 36 states have cancer registries that meet minimum federal criteria for data quality, while only 34 states have systems for the tracking of birth defects and 23 track asthma.⁴⁰

Particularly troubling is the lack of disease tracking capability in the states that now experience the majority of toxic releases. While there is great variation in the public health capacities of the 13 states in the Southeast and Southcentral regions, most do not have a strong public health infrastructure with which to examine the health impacts of local toxic exposures. For example, only three of the 13 states in the two regions have statewide cancer registries that meet the highest standards for data quality as judged by the North American Association of Central Cancer Registries (NAACCR).⁴¹ Cancer registries in six of the 13 states do not meet even the most basic federal standards for data quality. Only five of the states have any tracking system at all for asthma, according to data reported to the Centers for Disease Control and Prevention.⁴² Such a lack of basic data on the incidence of chronic disease in these states can make it difficult for researchers to trace the links between the development of these diseases and environmental exposures.

In sum, the data collected under TRI do not capture all toxic emissions that can be dangerous to health. Existing science does not paint a clear picture of how a large number of potentially dangerous substances can impact human health. And the lack of human exposure data makes it extremely difficult to determine how much of what is emitted into the environment actually ends up in our bodies.

But the widespread release of carcinogenic, developmental, reproductive, neurological and respiratory toxicants documented through TRI is evidence enough that citizens should be concerned about how these substances may be affecting their health. Investigating the potential links between these releases and the incidence of chronic disease in our communities should be a national public health priority.

PROTECTING PUBLIC HEALTH FROM TOXIC CHEMICALS

mericans know far more about the potential threats posed by toxic releases in their communities than they did two decades ago. Yet the data on toxic releases reviewed in this report show that many communities still face largescale releases of substances that may be damaging to health. Moreover, crucial gaps remain in our understanding of how those releases may affect our health and well-being.

A comprehensive response to the toxic threat to health will require action in three areas: tracking the links between toxic releases and health problems in our communities, expanding citizens' right to know about toxic substances and their release to the environment, and reducing the severity and magnitude of toxic releases.

TRACKING THE LINK BETWEEN TOXICS AND HEALTH

Investigations of the links between environmental factors and chronic disease incidence have long been hamstrung by a lack of information on the rates of chronic disease affecting communities and the levels of toxic substances to which residents have been exposed. In addition, these investigations which tend to be costly and complex—are often limited by a severe lack of financial and staffing resources among the public health departments that are called upon to conduct them.

One approach to bolstering the ability of public health officials to conduct such investigations would be the creation of a nationwide environmental health tracking network. Such a network would include several components:

 Expanded monitoring of human exposure to toxic chemicals, so that public health officials have a clearer understanding of the levels of toxicants to which Americans are actually exposed.

- An early warning system that would alert communities to immediate health crises such as heavy metal and pesticide poisonings.
- Rapid response teams to quickly evaluate disease clusters and other health threats thought to be linked to specific toxic exposures.
- Enhanced tracking of the incidence of chronic diseases—such as asthma, cancer, birth defects and Alzheimer's—in order to help evaluate the potential links between these diseases and toxic exposures.

In recent years, the federal government, through the CDC, has taken the first steps toward the goal of nationwide health tracking, supporting pilot programs in a number of states to improve monitoring of chronic disease and environmental conditions. These steps must continue and be expanded upon to ensure that America's public health system can respond appropriately to environmental health threats.

Finally, researchers should be encouraged to use existing tools to investigate the links between toxic exposures and health. In recent years, studies have combined environmental monitoring data—such as data from air pollution monitors and information on contaminants in drinking water—with information from disease registries to develop new hypotheses about how toxic substances can impact health. Such efforts can play an important role in protecting public health even as new sources of data on human exposure to toxic substances are being developed.

Better tracking of chemical exposures and potentially related disease rates will have many major benefits—among them, improving communities' understanding of the health impacts of pollution and ensuring that health problems are identified quickly and addressed immediately. But public policies to protect public health should not wait for proof that harm is occurring, or even that exposure is occurring. Sound public policy would work to reduce and ultimately eliminate the use of known toxic chemicals in order to prevent toxic impacts on health, rather than wait for conclusive proof that may come too late.

EXPANDING CITIZENS' RIGHT TO KNOW

For citizens' right to know about toxic releases to have real meaning, citizens must be able to find out how the chemicals released in their communities can potentially affect their health.

The lack of complete and accurate information about the toxicity of many commonly used chemicals is nothing short of scandalous. EPA efforts in the late 1990s to encourage producers to complete toxicity studies for their "high production volume" chemicals continue to move ahead, but at an extremely slow pace. Even the basic "screening level" data the EPA is seeking for high production volume chemicals may not provide sufficient information about the synergistic effects of chemicals in the environment or the complex issues related to timing of exposure that are so important in evaluating developmental toxicity.

Action must be taken to require testing of existing and new chemical substances for their full range of health impacts, including neurological and respiratory toxicity. In its 1998 review of high production volume chemicals, EPA estimated the cost for a full round of basic screening tests, including for reproductive and developmental toxicity, at about \$205,000 per chemical.⁴³ This is a small price to pay for industries that have benefited for years—sometimes decades—from the manufacture and sale of these substances.

In addition, this review of TRI data suggests that many industrial toxic releases nationwide are not reported to the program. Expansion of TRI reporting requirements—or supplementing of TRI through the creation of more state-level programs to track toxic releases—would help fill these data gaps and ensure that citizens have a clearer picture of the toxic releases to which they may be exposed.

Citizens also need better information about exposure to chemicals through routes other than direct environmental releases. Provisions such as California's Proposition 65, which guarantees citizens the right to know about toxic substances in consumer products, can also be helpful in filling the knowledge gap. There should be a national reporting system for toxic chemicals contained in consumer products. Massachusetts and New Jersey both require chemical use reporting—facilities report the total amount of each chemical used during the year and where it ended up; not only environmental releases and wastes, but also the quantity used in the factory and the quantity that is shipped out in products.

Government must also change the burden of proof in approving new chemicals for the market and new practices that may result in increased toxic releases in communities. For too long, government policy has held toxic chemicals "innocent until proven guilty," reserving judgment about the ultimate use of such chemicals until health problems have already occurred. Instead, chemicals should be demonstrated to be safe before they are permitted to be released into the environment in large quantities. Such an approach puts the needs of public health first, and could forestall many future health crises resulting from toxic releases.

REDUCING TOXIC RELEASES

The data reported to TRI demonstrate that toxic chemicals are released to the environment in significant quantities nationwide. While the links between many of these chemicals and health problems are unproven, common sense and the weight of available evidence suggest that prudent steps be taken to reduce the use and release of toxic chemicals nationwide.

The first step in such a program would be to prevent rollbacks of existing laws that limit toxic releases. Proposals by the Bush administration to weaken "New Source Review" restrictions on older electric power plants (many of which are substantial sources of mercury and respiratory toxicants) and to loosen regulations on the dumping of mining wastes into waterways are extremely troubling in this regard. Also troubling is the administration's refusal to implement important provisions of the Stockholm Convention, which calls for the phaseout of 12 persistent toxicants and provides for an international science-based process for addressing additional chemicals.

On the positive side, state and federal governments can play a direct role in reducing toxic emissions to the air and water by more fully implementing and enforcing basic pollution laws such as the Clean Air Act and Clean Water Act. Policy-makers at all levels of government should strive toward the long-term goal of eliminating toxic discharges to water and reducing the cancer risk posed by air toxics to less than the EPA's 1-in-a-million additional cancer case benchmark.

Ultimately, however, state and federal governments must address the issue of preventing pollution by encouraging reductions in the use of toxic chemicals and the substitution of safer alternatives. While several states-including Massachusetts, New Jersey and Oregon-have taken steps in this direction, momentum toward toxics use reduction has slowed in recent years. Recent increases in the generation of toxic waste by industrial facilities nationwide suggest that pollution prevention techniques have not been aggressively applied by many sectors of industry. In contrast, Massachusettswhose Toxics Use Reduction Act of 1989 requires reporting of toxic chemical use and the development of plans for use reduction by industry-has seen a 58 percent drop in the generation of toxic waste per unit of production since 1990, along with a 90 percent drop in TRI releases per unit of production.44

Revitalizing pollution prevention efforts—particularly in the southern states that now account for the majority of toxic releases—should be a top policy priority.

METHODOLOGY

Il data analyzed for this report are from the EPA's Toxics Release Inventory. TRI data for 1987 through 2000 were provided by EPA on compact disc. Subsequent amendments to TRI reports made by industry following EPA's release of the 2000 reporting year data are not reflected in this analysis. All data analysis was done by combining reports for all years of the program into a single Visual Foxpro database.

Releases Covered

TRI reporting by industry provides hundreds of pieces of information on the disposal of toxic substances. In addition to releases to air and water, TRI reporting tracks releases to land—both on-site and off-site—releases to underground injection wells and publicly owned treatment works (POTWs), and materials transported off-site for recycling or other disposal.

Because the primary purpose of this report is to highlight the connection between toxic emissions and health, only those releases with the most immediate routes of exposure were included. Also, because we focus primarily on local health threats, we limited analysis to those releases that could, in theory, result in exposures near a facility within a relatively short period of time. In practice, these factors caused us to limit our analysis to toxic releases to air and surface water.

This narrow focus means that some serious pollution problems are excluded from consideration. For example, discharges of toxic chemicals to publicly owned treatment works are a major water quality problem, since sewage treatment plants are frequently incapable of properly treating the chemicals before they are discharged to surface water. But because the point of surface water discharge can be far distant from the facility in question (and because POTWs' degree of success in managing toxic discharges varies widely), these important releases were excluded.

An even larger exclusion is that of on-site releases to land. Over the years since its inclusion in TRI in 1998, the mining industry has come to dominate TRI discharges of carcinogens, developmental and reproductive toxicants, and suspected neurological toxicants-largely due to the on-site land disposal of hundreds of millions of pounds of compounds including lead, arsenic and chromium. A strong case could be made for the inclusion of these releases in any analysis of toxic threats, since significant amounts of these compounds will eventually make their way into waterways. However, onsite land releases are excluded from this analysis for two reasons. First, while the long-term threat posed by mining releases is indisputable, the potential for near-term damage to public health is more questionable and depends on the particular circumstances of the release. Second, many mining facilities are in remote locations and the number of individuals that could potentially be subjected to near-term exposures is small. Including the massive releases of toxic substances to land could have served to deemphasize threats posed by less voluminous air and water discharges nationwide.

Chemical Lists

Lists of carcinogenic, developmental and reproductive toxicants are based on the state of California's Proposition 65 list. Lists of suspected neurological and respiratory toxicants are based on lists compiled by Environmental Defense's Scorecard.org Web site. Environmental Defense's lists are based primarily on information compiled by the EPA, the National Institute for Occupational Safety and Health, the states of California, Massachusetts and New Jersey, and European government agencies, as well as toxicological studies published in scientific journals. In a small number of cases, Environmental Defense conducted its own supplementary review to identify any remaining potential human health hazards. A complete list of sources and methodologies on which Environmental Defense's listings are based can be found at www.scorecard.org/health-effects/.

In cases in which a single chemical was listed, but TRI reports only releases by chemical class, the entire class was assumed to cause the listed health effect. (For example, releases of polycyclic aromatic compounds are reported to TRI as a class, even though they are listed separately on California's Prop 65 list.) Also, some chemicals are listed as toxic in certain forms on the Prop 65 list, but their releases are reported to TRI in the aggregate. (For example, several "technical grade" chemicals are listed as carcinogens under Prop 65, but TRI does not make a similar qualification.) Because there is no way to resolve this inconsistency, all substances reported to TRI that are listed on Prop 65 are assumed to cause the listed health effect, whatever their form.

In cases in which an elemental form of a substance was present on the Prop 65 list, compounds including the substance were assumed to also cause the listed health effect. Two specific examples bear mentioning. California's Prop 65 list includes lead and cadmium as developmental and reproductive toxicants, but not compounds of those substances. Environmental Defense lists lead compounds as recognized developmental and reproductive toxicants and cadmium compounds as suspected developmental and reproductive toxicants based on the inclusion of their elemental forms on the Prop 65 list. This analysis includes both lead compounds and cadmium compounds in our list of developmental and reproductive toxicants.

Further, the category "reproductive toxicants" in this analysis includes some substances that have been listed by Prop 65 as impairing only the male or female reproductive system. A complete list of reproductive toxicants based on gender can be found in the Prop 65 list at *www.oehha.ca.gov/prop65/prop65_list/Newlist.html*.

Geographic Analysis

All listings of zip codes, cities, counties and states are based on the locations reported by the facilities to TRI. In some instances, the geographic coordinates reported to TRI by facilities do not correspond to a location within the state in which the facility resides. These facilities were excluded from the maps of toxic releases that accompany this report.

Industry Analysis

Industry analysis is based on the primary, fourdigit Standard Industrial Classification (SIC) codes reported by the facilities to TRI. Facilities listing more than one SIC code were grouped based on their primary SIC code. Industry names were derived from SIC codes based on the 1987 listing of SIC codes from the U.S. Census Bureau, obtained from *www.census.gov/epcd/oei/view/sic-sht2.txt*. Lists of "original industry" and "new industry" SIC codes covered by TRI were obtained from U.S. EPA, Standard Industrial Classification (SIC) Codes in TRI Reporting, downloaded from *www.epa.gov/tri/ report/siccode.html*, 8 October 2002.

Parent Company Analysis

Facilities reporting to TRI may also include the name of their parent companies. However, the reporting of parent company names is extremely inconsistent. In instances in which no parent company was listed, the name of the facility was assumed to also be the name of the parent company. In identifying the top 10 parent companies for each emissions category, an effort was made to combine entries with minor spelling variations (e.g. "3M Co." versus "3M Co., Inc."). Companies with the same name, or divisions of companies with the same primary name, were assumed to be controlled by the same parent company. In instances in which releases were reported by a merged company (e.g. "ExxonMobil"), efforts were made to include releases reported by their constituent companies ("Exxon" and "Mobil"). However, the limited and inconsistent reporting of parent company names to TRI makes it impossible to assert the complete accuracy of this analysis.

Handling of Historical TRI Data

Because the rules for reporting to TRI have changed many times since 1987, it is difficult to create an "apples-to-apples" comparison of toxic releases over time. The following procedures were used in handling historical TRI data.

- **Cumulative Toxic Releases**—Cumulative releases were based on the sum of all TRI releases reported by a given facility over the entire 1987 to 2000 period. This method will skew the rankings of the highest-releasing facilities toward those that have been covered by the program since its inception, however, it provides the best possible view of the total toxic releases to which a community has been subjected over time.
- **Comparisons Over Time**—Comparisons between current and past-year toxic releases were based only on emissions by original industries (those covered by the program prior to 1998) and chemicals included in the program as of the 1995 reporting year. As a result, total toxic releases compiled by this method do not match the cumulative toxic releases derived as described above and are not presented in this report.

One exception to this method is in the comparison of toxic releases by EPA region over the 1987 to 2000 period. For this analysis, all toxic releases by original TRI industries were included. Because the goal of this comparison was to gauge changes in the distribution of toxic releases across the country—and not the change in quantities of substances released this method provides a more accurate picture of how toxic releases are distributed nationwide.

Delisted Chemicals—Chemicals that have been removed from TRI reporting since 1987 were not included in this analysis. However, reported releases for earlier years of the program may not take into account changes in how releases of certain substances must be reported. (For example, the 1994 change that limited reporting of sulfuric acid releases to "acid aerosols only.") For these substances, reported releases for early years of the program may overstate or understate the amount of releases that would be reported to TRI under current rules.

Notes

1. National Toxicology Program, *The Report on Carcinogens*—9th Edition (press release), May 2000.

2. This estimate includes individual chemicals whose emissions are reported to TRI as a class. For example, this figure includes 17 separate polycyclic aromatic compounds, whose emissions are reported to TRI as a class.

3. U.S. Agency for Toxic Substances and Disease Registry, *ToxFAQs for Methylene Chloride*, February 2001.

4. B.P. Bell, P. Franks, N. Hildreth, J. Melius, "Methylene Chloride Exposure and Birthweight in Monroe County, New York" [Abstract], *Environmental Research*, 55(1):31-9, June 1991.

5. Citizens' Environmental Coalition, *Kodak's Toxic Colors: Emissions and Health Problems*, downloaded from *www.kodakstoxiccolors.org/health/health.html*, 25 October, 2002; Corydon Ireland, "Activists Urge New Reviews at Kodak Park," *Rochester Democrat and Chronicle*, 20 March 2002.

6. Number of facilities within industry sector from U.S. Census Bureau, 1997 Economic Census: Bridge Between SIC and NAICS SIC: Manufacturing, downloaded from www.census.gov/epcd/ec97brdg/E97B2_30.HTM#D3086, 25 October 2002.

7. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, *Chemical Hazard Data Availability Study*, April 1998.

8. See note 9.

9. Lead compounds are not specifically identified as developmental or reproductive toxicants under Proposition 65. However, Environmental Defense, in its Scorecard.org Web site, classifies lead compounds as "recognized" developmental and reproductive toxicants. The TOXNET database of the National Library of Medicine cites several studies suggesting that exposure to inorganic lead compounds can lead to reproductive problems and impaired neurological development in children. As a result, lead compounds are included in these categories for purposes of this study. A similar determination was made to include cadmium compounds in this category, despite Prop 65's listing of only elemental cadmium as a developmental and reproductive toxicant. Environmental Defense lists cadmium compounds as suspected developmental and reproductive toxicants based on its extension of the Prop 65 list and other sources. SOURCES: Environmental Defense, Scorecard, www.scorecard.org, accessed 11 October 2002. U.S. National Library of Medicine, TOXNET database, Lead Compounds, toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/ ~AAA PaGFi:1, accessed 11 October 2002.

10. U.S. Agency for Toxic Substances and Disease Registry, *ToxFAQs for Toluene*, February 2001.

11. U.S. Agency for Toxic Substances and Disease Registry, *ToxFAQs for Carbon Disulfide*, September 1997.

12. U.S. EPA, Region 3, Mid-Atlantic Hazardous Site Cleanup Division, *Current Site Information: Avtex Fibers, Inc.*, updated August 2002.

13. Dana C. Crawford, *Memorandum: Epi-Aid Trip Report: Possible Cluster of Orofacial Clefts,* Centers for Disease Control and Prevention, 24 January 2000 (sic).

14. California Environmental Protection Agency, Air Resources Board, *Toxic Air Contaminant Identification List Summaries: Methanol*, September 1997.

15. U.S. Agency for Toxic Substances and Disease Registry, *El Paso Multiple Sclerosis Cluster Investigation*, *El Paso, El Paso County, Texas* [Public Review Draft], August 2001.

16. The 1997 Economic Census identifies only 39 pulp mill establishments in the U.S., as opposed to the 81 facilities in the category reporting to TRI in 2000. The Census Bureau classifies pulp mills that are also involved in the production of paper, paperboard and other materials under codes for those industries, not the code for pulp mills. More than half of the pulp mills reporting to TRI listed secondary or tertiary Standard Industrial Classifications (SICs) in the paper or paperboard industry sectors. As a result of these differences in classification, it is difficult to ascertain how much of the pulp manufacturing industry reports to TRI.

17. Rob McConnell, et al, "Asthma in Exercising Children Exposed to Ozone: A Cohort Study," *The Lancet*, 2 February 2002.

18. U.S. Environmental Protection Agency, Office of Research and Development, *Information Sheet 1: Dioxin: Summary of the Dioxin Reassessment Science*, 25 May 2001.

19. John McQuaid, "A Health Risk," *New Orleans Times-Picayune*, 23 May 2000.

20. U.S. Agency for Toxic Substances and Disease Registry, *Health Consultation: Exposure Investigation Report: Calcasieu Estuary, Lake Charles, Calcasieu Parish, Louisiana,* 19 November 1999.

21. Kimberly Gallo, Jessica King, Joseph Sejud, *Cancer in Calcasieu Parish*, *Louisiana*, 1988-1997, Louisiana Department of Health and Hospitals, January 2002.

22. Decline in facilities reporting from U.S. Environmental Protection Agency, *Summary of 1998 Toxics Release Inventory Data*, downloaded from *www.epa.gov*/ *tri/tridata/tri98/data/1998datasumm.pdf*, 15 October 2002.

23. Jeremiah Baumann, U.S. PIRG, *Toxic Threats: An Analysis of the 2000 Toxics Release Inventory Data* (press release) 23 May 2002.

24. The downward trend in Region 2 would have been even more pronounced were it not for the inclusion of Puerto Rico.

25. U.S. Environmental Protection Agency, 2000 Toxics Release Inventory (TRI) Public Data Release Report (Executive Summary), May 2002.

26. The Pew Charitable Trusts, *Public Opinion Research* on *Public Health, Environmental Health, and the Country's Public Health Capacity to Adequately Address Environmental Health Problems*, May 1999. Survey conducted March 1999.

27. C.W. Trumbo, "Public Requests for Cancer Cluster Investigations: A Survey of State Health Departments," *American Journal of Public Health*, Vol. 90, No. 8, 1300-1303.

28. CNN.com, "Environment More Important than Heredity to Cancer Risk, Study Suggests," 13 July 2000.

29. National Academy of Sciences, *Scientific Frontiers in Developmental Toxicology and Risk Assessment*, June 2000, 1.

30. California Environmental Protection Agency, Air Resources Board, *Study Links Air Pollution and Asthma* [Press Release], 31 January 2002; Boate Ritz, Fei Yu, Scott Fruin, Guadalupe Chapa, Gary M. Shaw and John A. Harris, "Ambient Air Pollution and Risk of Birth Defects in Southern California," *American Journal of Epidemiology*, vol. 155, no. 1 (2002), 17.

31. Emily Figdor, U.S. PIRG Education Fund, Dangers of Diesel: How Diesel Soot and Other Air Toxics Increase Americans' Risk of Cancer, October 2002.

32. U.S. Environmental Protection Agency, *National Air Toxics Assessment, Summary of Results,* downloaded from *www.epa.gov/ttn/atw/nata/risksum.html,* 14 October 2002.

33. U.S. Environmental Protection Agency, Office of Research and Development, *Information Sheet 1: Dioxin: Summary of the Dioxin Reassessment Science*, 25 May 2001.

34. U.S. Environmental Protection Agency, Chemical Information Collection and Data Development (Testing), *Chemical Hazard Data Availability Study*, downloaded from *www.epa.gov/opptintr/chemtest/hazchem.htm*, 14 October 2002. 35. Ibid.

36. U.S. Environmental Protection Agency, *TSCA Chemical Testing Policy*, downloaded from *www.epa.gov/ opptintr/chemtest/sct4main.htm*, 7 October 2002.

37. 15 U.S.C. Sec. 2605

38. U.S. General Accounting Office, *Toxic Substances Control Act: Legislative Changes Could Make the Act More Effective*, September 1994.

39. U.S. General Accounting Office, *Toxic Chemicals: Long-Term Coordinated Strategy Needed to Measure Exposure in Humans*, May 2000.

40. North American Association of Central Cancer Registries, *Cancer Registries Certified for High Quality* 1999 Incidence Data, downloaded from www.naaccr.org/ Certification/1999Certification.html, 24 April 2002; "State Birth Defects Surveillance Programs Directory," Teratology, Vol. 64, S47-S116, 2001; Trust for America's Health, Short of Breath: Our Lack of Response to the Growing Asthma Epidemic and the Need for Nationwide Tracking, July 2001.

41. North American Association of Central Cancer Registries, *Cancer Registries Certified for High Quality* 1999 Incidence Data, downloaded from *www.naaccr.org/ Certification/1999Certification.html*, 24 April 2002.

42. Trust for America's Health, Short of Breath: Our Lack of Response to the Growing Asthma Epidemic and the Need for Nationwide Tracking, July 2001.

43. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, *Chemical Hazard Data Availability Study*, April 1998.

44. Toxics Use Reduction Institute, *Results to Date*, downloaded from *www.turi.org/turadata/Successs/ ResultsToDate.html*, 16 December 2002.

APPENDIX A: GLOSSARY OF ABBREVIATIONS

ATSDR: U.S. Agency for Toxic Substances and Disease Registry CDC: U.S. Centers for Disease Control and Prevention EPA: U.S. Environmental Protection Agency FDA: U.S. Food and Drug Administration GAO: U.S. General Accounting Office MS: Multiple sclerosis NAACCR: North American Association of Central Cancer Registries NEC: Not elsewhere classified NIEHS: National Institute for Environmental Health Sciences NIH: National Institutes of Health POTW: Publicly owned treatment works SIC: Standard Industrial Classification TRI: Toxics Release Inventory

TSCA: Toxic Substances Control Act

APPENDIX B: CHEMICALS AND HEALTH EFFECTS

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
FORMALDEHYDE	50000	х		S		S
PIPERONYL BUTOXIDE	51036			S		
FLUOROURACIL	51218		Х	S		
2,4-DINITROPHENOL	51285			S		
MECHLORETHAMINE	51752	х	х			
URETHANE	51796	х	х			S
FAMPHUR	52857			S		
2-ACETYLAMINOFLUORENE	53963	х				
N-NITROSODIETHYLAMINE	55185	Х				S
FENTHION	55389			S		S
NITROGLYCERIN	55630			S		S
CARBON TETRACHLORIDE	56235	х		S		S
BIS(TRIBUTYLTIN) OXIDE	56359			S		S
PARATHION	56382			S		S
1,1-DIMETHYL HYDRAZINE	57147	х		S		S
PENTOBARBITAL SODIUM	57330		х	S		
PHENYTOIN	57410	Х	х	S		S
BETA-PROPIOLACTONE	57578	х				S
CHLORDANE	57749	х		S		S
GAMMA-LINDANE	58899	х		S		S
N-NITROSOMORPHOLINE	59892	Х				S
4-AMINOAZOBENZENE	60093	х				
4-DIMETHYLAMINOAZOBENZENE	60117	х				
METHYL HYDRAZINE	60344	х		S		S
ACETAMIDE	60355	Х				
DIMETHOATE	60515			S		S
AMITROLE	61825	Х				
ANILINE	62533	х		S		S
THIOACETAMIDE	62555	Х				
THIOUREA	62566	х				
DICHLORVOS	62737	Х		S		
FLUOROACETIC ACID, SODIUM SALT	62748			S	х	S
N-NITROSODIMETHYLAMINE	62759	Х		S		S
CARBARYL	63252			S		
FORMIC ACID	64186			S		S
DIETHYL SULFATE	64675	х				
METHANOL	67561			S		S
ISOPROPYL ALCOHOL	67630			S		S
CHLOROFORM	67663	Х		S		S
HEXACHLOROETHANE	67721	х		S		S

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
N,N-DIMETHYLFORMAMIDE	68122			S		S
TRIAZIQUONE	68768	х				
HEXACHLOROPHENE (HCP)	70304			S		S
N-BUTYL ALCOHOL	71363					S
BENZENE	71432	х	х	S	х	S
1,1,1-TRICHLOROETHANE	71556			S		
METHOXYCHLOR	72435			S		S
TRYPAN BLUE	72571	х				
METHYL BROMIDE	74839		Х	S		S
ETHYLENE	74851			S		
CHLOROMETHANE	74873		х	S		S
METHYL IODIDE	74884	х		S		S
HYDROGEN CYANIDE	74908			S		S
METHYLENE BROMIDE	74953			S		
CHLOROETHANE	75003	х		S		S
VINYL CHLORIDE	75014	х		S		S
ACETONITRILE	75058			S		S
ACETALDEHYDE	75070	х		S		S
DICHLOROMETHANE	75092	х		S		S
CARBON DISULFIDE	75150		х	S	х	
ETHYLENE OXIDE	75218	Х		S	х	S
TRIBROMOMETHANE	75252	х		S		S
DICHLOROBROMOMETHANE	75274	х		S		
1,1-DICHLOROETHANE	75343	х		S		
1,1-DICHLOROETHYLENE	75354			S		S
PHOSGENE	75445					S
CHLORODIFLUOROMETHANE	75456			S		S
PROPYLENEIMINE	75558	х				S
PROPYLENE OXIDE	75569	Х		S		S
BROMOTRIFLUOROMETHANE	75638			S		
TERT-BUTYL ALCOHOL	75650			S		
TRICHLOROFLUOROMETHANE (CFC-11)	75694			S		S
DICHLORODIFLUOROMETHANE (CFC-12)	75718			S		S
2-METHYLLACTONITRILE	75865			S		S
PENTACHLOROETHANE	76017			S		
CHLOROPICRIN	76062			S		S
FREON 113	76131			S		S
DICHLOROTETRAFLUOROETHANE (CFC-114)	76142			S		
MONOCHLOROPENTAFLUOROETHANE (CFC-115) 76153			S		
HEPTACHLOR	76448	Х	Х	S		

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
TRIPHENYLTIN HYDROXIDE	76879	х	х			
HEXACHLOROCYCLOPENTADIENE	77474			S		S
DICYCLOPENTADIENE	77736			S		
DIMETHYL SULFATE	77781	х		S		S
S,S,S-TRIBUTYLTRITHIOPHOSPHATE	78488			S		
ISOBUTYRALDEHYDE	78842					S
1,2-DICHLOROPROPANE	78875	х		S		S
SEC-BUTYL ALCOHOL	78922					S
METHYL ETHYL KETONE	78933			S		S
1,1,2-TRICHLOROETHANE	79005	х		S		
TRICHLOROETHYLENE	79016	х		S		S
ACRYLAMIDE	79061	х		S		
ACRYLIC ACID	79107					S
CHLOROACETIC ACID	79118					S
METHYL CHLOROCARBONATE	79221					S
1,1,2,2-TETRACHLOROETHANE	79345	х		S		S
DIMETHYLCARBAMOYL CHLORIDE	79447	х				S
2-NITROPROPANE	79469	х		S		S
4,4'-ISOPROPYLIDENEDIPHENOL	80057			S		
CUMENE HYDROPEROXIDE	80159					S
METHYL METHACRYLATE	80626			S		S
WARFARIN	81812		х	S		
C.I. FOOD RED 15	81889	х				
1-AMINO-2-METHYLANTHRAQUINONE	82280	х				
DIBUTYL PHTHALATE	84742			S		
PHENANTHRENE	85018					S
PHTHALIC ANHYDRIDE	85449			S		S
N-NITROSODIPHENYLAMINE	86306	х				S
2,6-XYLIDINE	87627	Х				
HEXACHLORO-1,3-BUTADIENE	87683			S		
PENTACHLOROPHENOL	87865	х		S		S
2,4,5-TRICHLOROPHENOL	95954					S
STYRENE OXIDE	96093	Х		S		S
1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	96128	х		S	Х	S
1,2,3-TRICHLOROPROPANE	96184	х		S		S
METHYL ACRYLATE	96333			S		S
ETHYLENE THIOUREA	96457	х	Х			
DICHLOROPHENE	97234		х			
C.I. SOLVENT YELLOW 3	97563	х				
BENZOIC TRICHLORIDE	98077	х		S		S

	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
CUMENE	98828			S		
BENZAL CHLORIDE	98873			S		S
BENZOYL CHLORIDE	98884					S
NITROBENZENE	98953	х		S		S
5-NITRO-O-ANISIDINE	99592	х				
M-DINITROBENZENE	99650			S	х	S
P-NITROANILINE	100016			S		
4-NITROPHENOL	100027			S		
P-DINITROBENZENE	100254			S	х	
ETHYLBENZENE	100414			S		S
STYRENE	100425			S		S
BENZYL CHLORIDE	100447	х		S		S
N-NITROSOPIPERIDINE	100754	х				S
4,4'-METHYLENEBIS(2-CHLOROANILINE)	101144	х		S		S
4,4'-METHYLENEBIS(N,N-DIMETHYL)BENZENAMIN	E 101611	х				
4,4'-METHYLENEDIANILINE	101779	х		S		
4,4'-DIAMINODIPHENYL ETHER	101804	х				
DIGLYCIDYL RESORCINOL ETHER (DGRE)	101906	х		S		
P-CHLOROPHENYL ISOCYANATE	104121					S
2,4-DIMETHYLPHENOL	105679			S		
P-XYLENE	106423			S		S
P-CRESOL	106445			S		S
1,4-DICHLOROBENZENE	106467	х		S		S
P-CHLOROANILINE	106478	х				
P-PHENYLENEDIAMINE	106503			S		S
QUINONE	106514			S		
1,2-BUTYLENE OXIDE	106887					S
EPICHLOROHYDRIN	106898	х		S	х	S
1,2-DIBROMOETHANE	106934	х	х	S	х	S
1,3-BUTADIENE	106990	х		S		S
ACROLEIN	107028			S		S
ALLYL CHLORIDE	107051			S		S
1,2-DICHLOROETHANE	107062	х		S		S
ALLYL AMINE	107119					S
ACRYLONITRILE	107131	х		S		S
ALLYL ALCOHOL	107186			S		S
PROPARGYL ALCOHOL	107197			S		
ETHYLENE GLYCOL	107211			S		S
CHLOROMETHYL METHYL ETHER	107302	х				S
VINYL ACETATE	108054			S		S

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
METHYL ISOBUTYL KETONE	108101			S		S
MALEIC ANHYDRIDE	108316					S
M-XYLENE	108383			S		S
M-CRESOL	108394			S		S
BIS(2-CHLORO-1-METHYLETHYL) ETHER	108601	х		S		
TOLUENE	108883		х	S		S
CHLOROBENZENE	108907			S		
CYCLOHEXANOL	108930			S		S
PHENOL	108952			S		S
2-METHYLPYRIDINE	109068			S		
ETHYLENE GLYCOL MONOMETHYL ETHER	109864		х	S	х	S
N-HEXANE	110543			S		S
ETHYLENE GLYCOL MONOETHYL ETHER	110805		х	S	х	S
CYCLOHEXANE	110827			S		
PYRIDINE	110861	Х		S		S
DIETHANOLAMINE	111422			S		
BIS(2-CHLOROETHYL) ETHER	111444	Х				S
PROPOXUR	114261			S		
PROPYLENE	115071					S
CHLORENDIC ACID	115286	х				
DICOFOL	115322			S		
ALDICARB	116063			S		
2-AMINOANTHRAQUINONE	117793	х				
BIS(2-ETHYLHEXYL)PHTHALATE	117817	х				S
HEXACHLOROBENZENE	118741	Х	Х	S		
3,3'-DIMETHOXYBENZIDINE	119904	х				
3,3'-DIMETHYLBENZIDINE	119937	Х				
2,4-DP	120365			S		
ISOSAFROLE	120581	Х				
P-CRESIDINE	120718	х				
CATECHOL	120809			S		
1,2,4-TRICHLOROBENZENE	120821			S		S
2,4-DINITROTOLUENE	121142	Х		S	х	
TRIETHYLAMINE	121448			S		S
N,N-DIMETHYLANILINE	121697			S		
MALATHION	121755			S		S
SIMAZINE	122349			S		
DIPHENYLAMINE	122394			S		S
1,2-DIPHENYLHYDRAZINE	122667	Х				
HYDROQUINONE	123319			S		S

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
PROPIONALDEHYDE	123386			S		
PARALDEHYDE	123637			S		
BUTYRALDEHYDE	123728					S
1,4-DIOXANE	123911	х		S		S
DIMETHYLAMINE	124403			S		S
TRIS(2,3-DIBROMOPROPYL) PHOSPHATE	126727	х		S		
METHACRYLONITRILE	126987			S		
2-CHLOR-1,3-BUTADIENE	126998	х		S		S
TETRACHLOROETHYLENE	127184	х		S		S
POTASSIUM DIMETHYLDITHIO-CARBAMATE	128030		х			
SODIUM DIMETHYLDITHIOCARBAMATE	128041		х			
DIMETHYL PHTHALATE	131113			S		S
O-PHENYLPHENATE, SODIUM	132274	х				
CAPTAN	133062	х		S		
FOLPET	133073	х				
O-ANISIDINE HYDROCHLORIDE	134292	х		S		
ALPHA-NAPHTHYLAMINE	134327	Х				
CUPFERRON	135206	х				
DIPROPYL ISOCINCHOMERONATE	136458	х				
THIRAM	137268			S		S
METHAM SODIUM	137428	Х	х			
DISODIUM CYANODITHIO-IMIDOCARBONATE	138932		х			
NITRILOTRIACETIC ACID	139139	х				
4,4'-DIAMINODIPHENYL SULFIDE	139651	х				S
ETHYL ACRYLATE	140885	х		S		S
BUTYL ACRYLATE	141322					S
NABAM	142596		х			
THIABENDAZOLE	148798			S		
2-MERCAPTOBENZOTHIAZOLE	149304			S		
MERPHOS	150505			S		
MONURON	150685					S
ETHYLENEIMINE	151564	х		S		S
P-NITROSODIPHENYLAMINE	156105	х				
CALCIUM CYANAMIDE	156627					S
METHYL PARATHION	298000			S		S
NALED	300765			S		
OXYDEMETON METHYL	301122			S	Х	
HYDRAZINE	302012	х		S		S
ALDRIN	309002	Х		S		S
ALPHA-LINDANE	319846	Х				

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
DIURON	330541	х				
DIAZINON	333415			S		
DIAZOMETHANE	334883			S		S
BROMOCHLORODIFLUOROMETHANE	353593			S		
3-CHLORO-1,1,1-TRIFLUOROPROPANE	460355			S		
CARBONYL SULFIDE	463581			S		
AURAMINE	492808	х				
MUSTARD GAS	505602	х		S		S
CHLOROBENZILATE	510156	х				
O-DINITROBENZENE	528290			S	х	
2-CHLOROACETOPHENONE	532274			S		S
DAZOMET	533744			S		S
4,6-DINITRO-O-CRESOL	534521			S		
1,2-DICHLOROETHYLENE	540590					S
ETHYL CHLOROFORMATE	541413					S
DITHIOBIURET	541537			S		
1,3-DICHLOROBENZENE	541731					S
1,3-DICHLOROPROPENE (MIXED ISOMERS)	542756	х		S		S
3-CHLOROPROPIONITRILE	542767			S		
BIS(CHLOROMETHYL) ETHER	542881	х				S
LITHIUM CARBONATE	554132		Х	S		
METHYL ISOTHIOCYANATE	556616			S		
3-CHLORO-2-METHYL-1-PROPENE	563473	х				
TOLUENE-2,4-DIISOCYANATE	584849			S		S
VINYL BROMIDE	593602	х		S		
PERCHLOROMETHYL MERCAPTAN	594423					S
2,6-DINITROTOLUENE	606202	х		S	х	
PENTACHLOROBENZENE	608935			S		
3,3'-DIMETHYLBENSIDINE DIHYDROCHLORIDE	612828	Х				
3,3'-DICHLOROBENZIDINE DIHYDROCHLORIDE	612839	х				
2,4-DIAMINOANISOLE	615054	х				
DI-N-PROPYLNITROSAMINE	621647	х				S
METHYL ISOCYANATE	624839					S
O-TOLUIDINE HYDROCHLORIDE	636215	х				
HEXAMETHYLPHOSPHORAMIDE	680319	х		S	Х	S
N-NITROSO-N-METHYLUREA	684935	х				
PROPANIL	709988			S		S
N-ETHYL-N-NITROSOUREA	759739	х		S		
ETHYL DIPROPYLTHIOCARBAMATE	759944		Х	S		
1,4-DICHLORO-2-BUTENE	764410	х		S		S

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
AMETRYN	834128			S		
C.I. SOLVENT YELLOW 14	842079	х				
N-METHYL-2-PYRROLIDONE	872504		Х	S		
N-NITROSODI-N-BUTYLAMINE	924163	х				S
N-METHYLOLACRYLAMIDE	924425	х		S		
PEBULATE	1114712					
PROPANE SULTONE	1120714	х		S		S
CYCLOATE	1134232			S		
MOLYBDENUM TRIOXIDE	1313275			S		S
THORIUM DIOXIDE	1314201	х				
CRESOL (MIXED ISOMERS)	1319773			S		S
2,4-D PROPYLENE GLYCOL BUTYL ETHER ESTER	R 1320189			S		
XYLENE (MIXED ISOMERS)	1330207			S		S
ASBESTOS (FRIABLE)	1332214	х				S
POLYCHLORINATED BIPHENYLS	1336363	х	х	S		S
ALUMINUM OXIDE (FIBROUS FORMS)	1344281			S		
1,1'-BI(ETHYLENE OXIDE)	1464535	х				S
CARBOFURAN	1563662			S		
METHYL TERT-BUTYL ETHER	1634044			S		
BROMOXYNIL	1689845		х			
BROMOXYNIL OCTANOATE	1689992		х			
1,1-DICHLORO-1-FLUOROETHANE	1717006			S		
NITROFEN	1836755	х		S		S
CHLOROTHALONIL	1897456	х		S		
PARAQUAT	1910425			S		S
ATRAZINE	1912249			S		
PROPACHLOR	1918167	х		S		S
2,4-D 2-ETHYLHEXYL ESTER	1928434			S		
2,4-D BUTOXYETHYL ESTER	1929733			S		
NITRAPYRIN	1929824		Х			
DIRECT BLACK 38	1937377	х				
MERCAPTODIMETHUR	2032657			S		
TRIBUTYLTIN METHACRYLATE	2155706			S		
MOLINATE	2212671			S		
TRIALLATE	2303175			S		
PROPARGITE	2312358	х	Х			
CHINOMETHIONAT	2439012	х	Х			
DIRECT BLUE 6	2602462	х				
2,3,5-TRIMETHYLPHENYL METHYLCARBAMATE	2655154			S		
SULFURYL FLUORIDE	2699798			S		S

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
2,4-D SODIUM SALT	2702729			S		
2,4-D CHLOROCROTYL ESTER	2971382			S		
TEMEPHOS	3383968			S		
METHOXONE SODIUM SALT	3653483			S		
C.I. FOOD RED 5	3761533	х				
N-NITROSOMETHYLVINYLAMINE	4549400	х				
CARBOXIN	5234684			S		
CHLORPYRIFOS METHYL	5598130			S		
TERBACIL	5902512		х			
C.I. ACID RED 114	6459945	х				
PROMETRYN	7287196			S		S
ALUMINUM	7429905			S		S
LEAD	7439921	х	х	S	х	S
MANGANESE	7439965			S		S
MERCURY	7439976		х	S		S
NICKEL	7440020	х		S		S
THALLIUM	7440280			S		
ANTIMONY	7440360			S		S
ARSENIC	7440382	х	Х	S		S
BARIUM	7440393			S		S
BERYLLIUM	7440417	х				S
CADMIUM	7440439	х	х	S	х	S
CHROMIUM (CR6+)	7440473	х				S
CHROMIUM	7440473					S
COBALT	7440484	х		S		S
COPPER	7440508					S
VANADIUM	7440622					S
ZINC	7440666					S
TITANIUM TETRACHLORIDE	7550450					S
SODIUM NITRITE	7632000			S		S
BORON TRIFLUORIDE	7637072			S		S
HYDROCHLORIC ACID	7647010					S
HYDROFLUORIC ACID	7664393			S		S
AMMONIA	7664417			S		S
SULFURIC ACID	7664939					S
TETRAMETHRIN	7696120			S		
NITRIC ACID	7697372					S
PHOSPHORUS (YELLOW OR WHITE)	7723140			S		S
BROMINE	7726956			S		S
POTASSIUM BROMATE	7758012	х				

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
FLUORINE	7782414					S
SELENIUM	7782492			S		S
CHLORINE	7782505			S		S
MEVINPHOS	7786347			S		S
PHOSPHINE	7803512			S		S
CAMPHECHLOR	8001352	х		S		S
CREOSOTES	8001589	х		S		
METIRAM	9006422	х	х			
OZONE	10028156			S		S
HYDRAZINE SULFATE	10034932	х		S		S
CHLORINE DIOXIDE	10049044					S
TRANS-1,3-DICHLOROPROPENE	10061026					
RESMETHRIN	10453868			S		
ZINEB	12122677			S		
MANEB	12427382	х		S		
ETHOPROP	13194484	х		S		
IRON PENTACARBONYL	13463406			S		S
FERBAM	14484641			S		
ALACHLOR	15972608	х				
C.I. DIRECT BROWN 95	16071866	х				
N-NITROSONORNICOTINE	16543558	х				S
BENOMYL	17804352	х		S	х	
OXYDIAZON	19666309	х	х			
3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE	20325400	х				
METHAZOLE	20354261		х			
OSMIUM OXIDE OSO4 (T-4)	20816120					S
ALUMINUM PHOSPHIDE	20859738			S		S
CYANAZINE	21725462		х	S		S
BENDIOCARB	22781233			S		
THIOPHANATE-METHYL	23564058			S	х	
PRONAMIDE	23950585	х				
ISOFENPHOS	25311711			S		
DINITROTOLUENE (MIXED ISOMERS)	25321146	х		S	х	S
DIAMINOTOLUENE (MIXED ISOMERS)	25376458	х				
PHENOTHRIN	26002802			S		
TOLUENE DIISOCYANATE (MIXED ISOMERS)	26471625	х		S		S
SODIUM AZIDE	26628228			S		S
C.I. DIRECT BLUE 218	28407376	х				
PIRIMIPHOS METHYL	29232937			S		
ACEPHATE	30560191			S		

	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
PROPETAMPHOS	31218834			S		
AMITRAZ	33089611			S		
TEBUTHIURON	34014181			S		
SULPROFOS	35400432			S		
IMAZALIL	35554440			S		
2,4-DIAMINOANISOLE SULFATE	39156417	х				
DINOCAP	39300453		х			
FENPROPATHRIN	39515418			S		
PROFENOFOS	41198087			S		
TRIADIMEFON	43121433		х	S	х	
VINCLOZOLIN	50471448	Х	х			
DICLOFOP METHYL	51338273		х			
FENVALERATE	51630581			S		
BROMACIL LITHIUM SALT	53404196		х			
2,4-D 2-ETHYL-4-METHYLPENTYL ESTER	53404378			S		
THIODICARB	59669260	х		S		
ACIFLUORFEN, SODIUM SALT	62476599	Х				
CHLORSULFURON	64902723		х		х	
FENOXAPROP ETHYL	66441234		Х			
HYDRAMETHYLNON	67485294		х		х	
CYHALOTHRIN	68085858			S		
CYFLUTHRIN	68359375			S		
FLUVALINATE	69409945		Х			
FLUAZIFOP BUTYL	69806504		х			
FENOXYCARB	72490018	Х				
QUIZALOFOP-ETHYL	76578148				х	
LACTOFEN	77501634	Х				
BIFENTHRIN	82657043			S		
MYCLOBUTANIL	88671890		х		х	
ANTIMONY COMPOUNDS	N010					S
ARSENIC (ORGANIC OR INORGANIC COMPOUNDS	S) N020	Х	Х	S		S
BERYLLIUM COMPOUNDS	N050	х				S
CADMIUM COMPOUNDS	N078	Х			х	S
CHROMIUM COMPOUNDS	N090	х				S
COBALT COMPOUNDS	N096					S
COPPER COMPOUNDS	N100					S
1,3-BIS(METHYLISOCYANATE) CYCLOHEXANE	N120					S
1,4-BIS(METHYLISOCYANATE) CYCLOHEXANE	N120					S
1,4-CYCLOHEXANE DIISOCYANATE	N120					S
DIETHYLDIISOCYANATOBENZENE	N120					S

-	AS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
4,4'-DIISOCYANATODIPHENYL ETHER	N120					S
2,4'-DIISOCYANATODIPHENYL SULFIDE	N120					S
3,3'-DIMETHOXYBENZIDINE-4,4'-DIISOCYANATE	N120					S
3,3'-DIMETHYL-4,4'-DIPHENYLENE DIISOCYANATE	N120					S
3,3'-DIMETHYLDIPHENYL METHANE-4,4'-DIISOCYANAT	E N120					S
HEXAMETHYLENE-1,6-DIISOCYANATE	N120					S
ISOPHORONE DIISOCYANATE	N120					S
4-METHYLDIPHNEYLMETHANE-3,4-DIISOCYANATE	N120					S
1,1-METHYLENEBIS(4-ISOCYANATOCYCLOHEXANE	i) N120					S
METHYLENEBIS(PHENYLISOCYANATE)	N120					S
1,5-NAPHTHALENE DIISOCYANATE	N120					S
1,3-PHENYLENE DIISOCYANATE	N120					S
1,4-PHENYLENE DIISOCYANATE	N120					S
4-METHYLDIPHENYLMETHANE-3,4-DIISOCYANATE	N120					S
POLYMERIC DIPHENYLMETHANE DIISOCYANATE	N120					S
2,2,4-TRIMETHYLHEXAMETHYLENE DIISOCYANATE	N120					S
2,4,4-TRIMETHYLHEXAMETHYLENE DIISOCYANATE	N120					S
1,2,3,4,6,7,8,9-OCTACHLORODIBENZO-P-DIOXIN	N150	*				
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	N150	*				
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	N150	*				
1,2,3,4,6,7,8,9-OCTACHLORODIBENZOFURAN	N150	*				
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	N150	*				
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	N150	*				
2,3,7,8-TETRACHLORODIBENZOFURAN	N150	*				
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	N150	*				
2,3,4,7,8-PENTACHLORODIBENZOFURAN	N150	*				
1,2,3,7,8-PENTACHLORODIBENZOFURAN	N150	*				
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	N150	*				
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	N150	*				
1,2,3,4,5,8-HEXACHLORODIBENZOFURAN	N150	*				
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	N150	*				
1,2,3,7,8,9-HEXACHLORODIBENZO FURAN	N150	*				
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	N150	*				
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	N150	*				
GLYCOL ETHERS	N230			S		S
LEAD COMPOUNDS	N420	х	х	S	Х	
MANGANESE COMPOUNDS	N450			S		S
MERCURY COMPOUNDS	N458		х	S		S
NICKEL COMPOUNDS	N495	х				S
POLYBROMINATED BIPHENYLS	N575	х	Х	S		

CHEMICAL	CAS Number or TRI Class	Cancer	Developmental	Neurological	Reproductive	Respiratory
BENZO(A)PYRENE	N590	х				S
BENZ(A)ANTHRACENE	N590	х				S
BENZO[J]FLUORANTHENE	N590	х				S
BENZO(K)FLUORANTHENE	N590	Х				S
CHRYSENE	N590	Х				S
DIBENZ[A,J]ACRIDINE	N590	х				S
DIBENZ[A,H]ACRIDINE	N590	Х				S
DIBENZO[A,I]PYRENE	N590	Х				S
BENZO(B)FLUORANTHENE	N590	Х				S
THALLIUM COMPOUNDS	N760			S		
VANADIUM COMPOUNDS	N770					S
WARFARIN AND SALTS	N874		Х	S		

X = Chemical or chemical class listed on California's Proposition 65 list of carcinogenic, developmental and reproductive toxicants, plus certain chemical classes listed based on an extension of the Prop 65 list. (See "Methodology")

S = Chemical or chemical class listed on the Scorecard.org list of suspected neurological or respiratory toxicants. Sourcing information for these chemicals can be found at *www.scorecard.org/health-effects/*.

* = Dioxin. Dioxin is not included in releases of any of the five categories of toxic compounds in this report. At least one member of the dioxin family—2,3,7,8-tetrachlorodibenzo-p-dioxin—has been identified by the state of California as a carcinogenic and developmental toxicant and by Environmental Defense as a suspected neurological and respiratory toxicant.

APPENDIX C: National Toxic Release Rankings

C.1 RELEASES BY STATE

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
тх	8,644,611	69,057	8,713,668	1	ок	927,285	2,923	930,209	29
PA	6,232,498	43,262	6,275,761	2	IA	884,978	21,567	906,545	30
N	6,214,965	50,150	6,265,116	3	MN	888,773	12,248	901,021	31
ЭН	5,778,617	58,989	5,837,606	4	МТ	740,649	770	741,418	32
TN	4,935,687	99,043	5,034,730	5	MD	628,605	22,293	650,898	33
MS	4,901,334	22,077	4,923,411	6	ME	560,063	21,154	581,217	34
SC	4,221,542	101,150	4,322,692	7	MA	514,781	61,368	576,149	35
NC	4,191,609	102,167	4,293,776	8	UT	301,404	4,992	306,397	36
LA	4,162,329	87,161	4,249,490	9	DE	295,281	4,633	299,915	37
FL	4,162,021	33,670	4,195,690	10	AZ	189,174	531	189,705	38
IL	3,904,543	13,923	3,918,466	11	NH	183,629	3,444	187,073	39
GA	3,259,232	65,823	3,325,055	12	NE	147,890	1,510	149,400	40
AL	3,122,108	121,474	3,243,582	13	RI	112,666	341	113,006	41
VA	3,086,556	28,859	3,115,415	14	NV	107,078	5,277	112,355	42
KY	2,479,622	109,236	2,588,859	15	ID	86,343	12,084	98,427	43
PR	2,507,549	9,084	2,516,633	16	ND	70,101	23,156	93,257	44
NY	2,202,428	156,361	2,358,789	17	н	87,368	64	87,432	45
OR	2,275,604	10,470	2,286,074	18	со	80,737	819	81,557	46
WI	2,163,656	21,667	2,185,323	19	NM	65,958	337	66,295	47
CA	2,025,868	82,225	2,108,093	20	WY	56,979	466	57,445	48
МО	1,873,458	20,144	1,893,602	21	AK	40,225	594	40,819	49
MI	1,747,061	20,697	1,767,758	22	VI	32,540	3	32,543	50
WA	1,627,993	94,558	1,722,551	23	SD	17,450	801	18,251	51
СТ	1,407,135	6,565	1,413,701	24	GU	3,913	0	3,913	52
AR	1,225,154	49,708	1,274,862	25	VT	1,493	9	1,502	53
NJ	1,101,762	48,508	1,150,270	26	MP	1,240	0	1,240	54
WV	1,039,441	110,478	1,149,920	27	DC	8	0	8	55
KS	1,072,749	1,884	1,074,633	28					

Table C.1.1 Cancer-Causing Chemical Releases by State, 2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
TN	27,926,717	21,448	27,948,165	1	СТ	857,722	330	858,052	29
AL	13,678,522	49,641	13,728,163	2	WA	754,340	1,126	755,466	30
IL	8,095,783	3,842	8,099,625	3	PR	539,390	48	539,438	31
тх	7,493,649	32,506	7,526,155	4	NE	472,533	105	472,638	32
IN	6,484,257	19,762	6,504,019	5	NV	450,478	3,856	454,334	33
NC	4,923,452	20,550	4,944,002	6	OR	401,012	1,771	402,783	34
SC	4,634,688	30,741	4,665,429	7	UT	294,791	1,747	296,538	35
PA	4,542,023	10,182	4,552,206	8	ID	283,198	1,152	284,350	36
VA	4,455,462	21,358	4,476,820	9	MD	277,128	5,267	282,395	37
MI	3,993,947	3,823	3,997,770	10	ME	265,417	49	265,466	38
KY	3,831,755	47,303	3,879,058	11	со	247,446	125	247,571	39
LA	3,653,721	9,280	3,663,001	12	NH	198,372	276	198,648	40
ОН	3,626,791	20,757	3,647,548	13	RI	182,875	32	182,907	41
MS	3,588,857	1,337	3,590,194	14	NM	181,460	4	181,464	42
NY	3,138,210	10,906	3,149,116	15	AZ	153,316	17	153,333	43
AR	2,985,826	8,403	2,994,228	16	SD	146,415	574	146,989	44
GA	2,932,112	6,677	2,938,788	17	ND	116,689	20,965	137,654	45
WI	2,806,119	1,563	2,807,682	18	WY	108,180	522	108,702	46
KS	2,773,414	950	2,774,364	19	МТ	89,981	50	90,030	47
FL	2,410,250	1,880	2,412,130	20	VI	78,958	1	78,959	48
MO	2,347,132	8,150	2,355,282	21	DE	73,112	230	73,341	49
NJ	2,011,500	31,712	2,043,212	22	AK	64,392	698	65,090	50
WV	1,773,792	8,523	1,782,314	23	н	60,122	44	60,166	51
ОК	1,703,977	904	1,704,881	24	VT	21,028	229	21,257	52
IA	1,698,113	2,297	1,700,410	25	GU	9,006	0	9,006	53
MN	1,689,479	75	1,689,554	26	MP	3,986	0	3,986	54
MA	1,143,186	687	1,143,873	27	DC	8	0	8	55
CA	953,797	1,683	955,480	28					

Table C.1.2 Developmental Toxicant Releases by State, 2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
TN	20,069,429	9,052	20,078,481	1	ND	41,406	17,337	58,743	28
AL	11,588,394	4,532	11,592,926	2	NC	49,975	6,871	56,846	29
IL	3,873,457	3,002	3,876,459	3	AZ	52,150	16	52,166	30
ТΧ	2,977,191	6,823	2,984,014	4	MN	49,626	67	49,693	31
KS	1,565,398	828	1,566,226	5	NM	43,470	3	43,473	32
AR	1,414,650	7,999	1,422,649	6	NV	41,086	60	41,146	33
LA	1,210,565	3,801	1,214,366	7	МТ	41,053	11	41,064	34
WV	832,455	3,901	836,356	8	WY	40,212	262	40,474	35
NY	819,735	3,638	823,373	9	AK	38,400	435	38,835	36
ОН	686,001	8,242	694,243	10	VI	36,097	1	36,098	37
GA	562,845	1,199	564,044	11	IA	31,977	220	32,197	38
МО	533,282	6,945	540,227	12	NH	31,393	262	31,655	39
PA	463,497	13,463	476,960	13	MA	29,409	314	29,723	40
FL	469,594	978	470,572	14	DE	28,193	162	28,355	41
WI	464,212	909	465,121	15	ні	27,411	20	27,431	42
SC	432,339	19,778	452,117	16	СТ	25,640	328	25,968	43
IN	314,311	7,190	321,501	17	MD	21,305	4,082	25,387	44
NJ	303,106	1,658	304,764	18	OR	21,826	935	22,761	45
MI	292,117	632	292,749	19	со	17,643	103	17,746	46
VA	241,630	10,663	252,293	20	NE	14,560	105	14,665	47
KY	220,942	9,557	230,499	21	ID	8,836	839	9,675	48
UT	119,403	1,488	120,891	22	RI	8,469	12	8,481	49
WA	119,066	700	119,766	23	ME	6,093	18	6,111	50
ОК	115,794	605	116,399	24	GU	3,440	0	3,440	51
CA	89,246	1,235	90,481	25	MP	1,240	0	1,240	52
MS	85,385	483	85,868	26	SD	1,104	5	1,109	53
PR	80,575	16	80,591	27	VT	5	9	14	54

Table C.1.3 Reproductive Toxicant Releases by State, 2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
ТΧ	84,468,530	1,373,996	85,842,526	1	MN	13,136,134	232,186	13,368,320	29
TN	65,817,360	1,007,192	66,824,552	2	NJ	9,745,876	472,832	10,218,708	30
LA	60,398,444	1,555,113	61,953,557	3	MD	7,738,537	487,961	8,226,498	31
OH	55,784,338	876,221	56,660,560	4	PR	7,969,851	6,915	7,976,766	32
AL	45,713,387	1,342,420	47,055,808	5	NE	5,654,542	218,857	5,873,399	33
IN	45,618,603	602,140	46,220,743	6	ME	5,071,827	418,533	5,490,360	34
GA	45,302,599	848,937	46,151,535	7	МТ	5,145,185	46,466	5,191,650	35
UT	44,618,462	13,045	44,631,507	8	ID	4,992,830	163,727	5,156,557	36
IL	40,808,804	217,056	41,025,861	9	MA	4,037,791	99,493	4,137,283	37
NC	39,384,934	1,112,336	40,497,270	10	СТ	3,633,571	40,483	3,674,054	38
SC	36,354,427	812,973	37,167,399	11	AZ	3,043,629	5,351	3,048,980	39
VA	36,009,751	453,560	36,463,311	12	со	2,731,928	46,320	2,778,248	40
FL	33,063,688	320,614	33,384,302	13	ND	2,473,726	49,850	2,523,576	41
MI	31,718,810	450,592	32,169,402	14	AK	2,435,819	67,481	2,503,300	42
PA	30,449,939	401,136	30,851,075	15	NH	2,316,348	95,038	2,411,386	43
MS	29,025,929	518,363	29,544,292	16	DE	2,330,439	65,682	2,396,121	44
KY	26,533,313	349,999	26,883,312	17	SD	1,956,317	6,783	1,963,100	45
MO	25,501,624	417,054	25,918,678	18	NV	1,936,881	22,107	1,958,988	46
AR	23,175,171	882,166	24,057,336	19	WY	1,416,988	16,049	1,433,037	47
CA	20,403,394	2,145,839	22,549,233	20	RI	926,538	755	927,293	48
WI	19,911,101	293,232	20,204,333	21	NM	730,514	699	731,213	49
IA	18,812,556	399,056	19,211,612	22	VI	508,830	38,403	547,233	50
OK	17,040,928	140,013	17,180,941	23	н	269,742	1,204	270,946	51
WA	15,577,240	1,037,113	16,614,353	24	VT	116,682	7,867	124,549	52
OR	15,751,540	191,101	15,942,641	25	GU	19,087	0	19,087	53
KS	14,640,883	115,038	14,755,921	26	AS	16,780	0	16,780	54
WV	12,877,644	1,206,421	14,084,064	27	MP	7,990	0	7,990	55
NY	13,559,157	494,293	14,053,450	28	DC	8	74	82	56

Table C.1.4 Suspected Neurological Toxicant Releases by State, 2000 (pounds)

State	Air Emissions	Rank	State	Air Emissions	Rank
он	133,325,669	1	NJ	15,904,089	29
NC	124,650,411	2	OR	15,832,450	30
GA	94,612,247	3	KS	14,882,875	31
PA	92,996,650	4	MN	14,148,060	32
FL	86,318,614	5	MA	9,079,875	33
IN	85,218,750	6	NE	7,792,084	34
ТХ	82,916,656	7	DE	7,242,927	35
TN	80,682,391	8	ME	6,322,936	36
WV	71,799,135	9	MT	6,050,295	37
MI	68,359,686	10	NH	5,376,767	38
AL	67,878,236	11	ID	5,270,149	39
КY	66,327,729	12	AZ	4,904,689	40
LA	63,850,151	13	СТ	4,736,345	41
IL	60,512,782	14	со	3,613,635	42
VA	57,126,815	15	ND	3,145,916	43
SC	53,744,745	16	NV	2,958,964	44
UT	48,912,957	17	AK	2,693,469	45
MS	42,551,517	18	SD	2,027,682	46
МО	35,903,445	19	WY	1,907,549	47
MD	33,860,843	20	NM	1,159,072	48
NY	31,470,735	21	ні	1,022,580	49
WI	28,319,232	22	RI	944,788	50
AR	23,887,688	23	VI	460,180	51
CA	21,723,478	24	GU	223,797	52
IA	21,522,805	25	VT	117,713	53
ОК	18,363,490	26	DC	53,008	54
WA	17,442,906	27	AS	16,780	55
PR	17,237,508	28	MP	7,990	56

Table C.1.5 Suspected Respiratory Toxicant Releases by State, 2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
ТХ	528.5	602.3	1,130.8	1	OR	8.8	24.6	33.3	28
LA	103.5	934.7	1,038.2	2	МІ	25.2	5.8	31.1	29
AL	902.3	130.7	1,032.9	3	МО	27.2	2.9	30.2	30
GA	994.6	19.6	1,014.2	4	DE	5.0	14.0	19.0	31
UT	658.4	0.0	658.4	5	PR	16.5	0.0	16.5	32
NE	432.2	0.0	432.2	6	МТ	16.1	0.2	16.3	33
MS	20.4	176.2	196.6	7	WY	15.2	0.0	15.2	34
IN	190.7	0.0	190.8	8	ME	8.7	6.2	14.9	35
PA	173.2	4.5	177.7	9	AZ	14.2	0.0	14.2	36
VA	104.3	6.7	111.0	10	SD	1.1	12.6	13.7	37
SC	98.4	5.7	104.0	11	MA	11.7	0.1	11.7	38
WA	40.3	44.3	84.6	12	NV	10.9	0.0	10.9	39
FL	70.6	4.4	75.0	13	СТ	7.6	3.0	10.6	40
NC	69.0	3.5	72.4	14	NJ	8.0	0.5	8.6	41
WV	66.6	2.8	69.4	15	MN	8.3	0.0	8.3	42
OK	67.9	0.2	68.1	16	со	8.3	0.1	8.3	43
TN	49.6	16.1	65.7	17	NM	8.0	0.0	8.0	44
WI	62.0	0.8	62.8	18	ND	7.7	0.0	7.7	45
ОН	53.4	2.78	56.2	19	ID	1.9	5.1	7.0	46
IA	51.0	0.0	51.0	20	HI	4.9	0.0	4.9	47
MD	34.1	16.3	50.4	21	NH	1.4	0.7	2.1	48
IL	50.0	0.0	50.0	22	VT	1.1	0.0	1.1	49
KS	46.1	0.7	46.8	23	VI	1.0	0.1	1.1	50
AR	29.1	12.1	41.2	24	AK	0.5	0.0	0.5	51
KY	35.2	5.1	40.3	25	DC	0.1	0.0	0.1	52
NY	32.6	6.3	38.9	26	RI	0.0	0.0	0.0	53
CA	34.6	4.1	38.7	27					

Table C.1.6 Dioxin Releases by State, 2000 (grams)

C.2 RELEASES BY COUNTY

County	State	Air	Water	Total	County	State	Air	Water	Total
LEE	MS	3,093,345	0	3,093,345	ORANGE	FL	594,485	0	594,485
HARRIS	ΤХ	2,805,967	12,984	2,818,951	HARRISON	IN	579,495	0	579,495
ELKHART	IN	2,709,800	2	2,709,802	ANGELINA	ТΧ	567,122	8,993	576,115
ERIE	PA	1,909,971	20	1,909,991	ORANGEBURG	SC	545,356	6,593	551,949
MONROE	NY	1,380,681	8,933	1,389,613	LANE	OR	547,940	857	548,796
BARCELONETA	PR	1,366,418	0	1,366,418	DU PAGE	IL	527,748	29	527,777
GEORGETOWN	SC	1,347,491	5,215	1,352,706	EAST BATON				
GIBSON	TN	1,306,181	0	1,306,181	ROUGE	LA	501,146	8,786	509,932
JEFFERSON	KY	1,238,215	18,622	1,256,837	GALVESTON	ТΧ	503,448	3,156	506,604
ALLEN	ОН	1,157,769	0	1,157,769	SEDGWICK	KS	494,247	1,026	495,273
LUZERNE	PA	1,108,196	7	1,108,203	MORGAN	AL	479,426	2,063	481,489
BRAZORIA	тх	824,415	12,830	837,245	NEW HAVEN	СТ	461,062	3,708	464,770
HAMBLEN	TN	792,549	5	792,554	MADISON	IL	440,185	2,878	443,063
PALM BEACH	FL	791,921	0	791,921	FREDERICK	VA	439,007	0	439,007
LINN	OR	788,791	2,568	791,359	NUECES	ТΧ	433,331	4,119	437,450
ASCENSION	LA	768,619	19,652	788,271	GASTON	NC	428,205	5,133	433,338
COWLITZ	WA	768,637	13,938	782,575	MECKLENBURG	3 NC	427,021	5,625	432,646
JEFFERSON	TX	772,611	5,231	777,842	ST JOHN THE BAPTIST	LA	431,261	5	431,266
MONROE	ОН	763,500	0	763,500	TATE	MS	419,457	0	419,457
MONTGOMERY	PA	744,355	279	744,634	GUILFORD	NC	413,102	0	413,102
MIAMI-DADE	FL	744,586	0	744,586	DEFIANCE	ОН	411,858	982	412,840
JEFFERSON	МО	718,336	5,760	724,096	LAS PIEDRAS	PR	406,883	0	406,883
SAN JOAQUIN	CA	712,801	22	712,823	BEDFORD	VA	399,400	1,100	400,500
CUYAHOGA	ОН	686,688	1,021	687,709	LINCOLN	TN	396,553	0	396,553
СООК	IL	617,610	1,723	619,333	CALHOUN	тх	390,021	2,800	392,821
HAMILTON	TN	615,327	23	615,350	RANDOLPH	NC	388,779	5	388,784

Table C.2.1 Top 50 U.S. Counties for Cancer-Causing Chemical Releases, 2000 (pounds)

County	State	Air	Water	Total	County	State	Air	
HAMBLEN	TN	17,365,941	750	17,366,691	ST CLAIR	MI	835,202	
MOBILE	AL	11,401,214	6,972	11,408,186	FORREST	MS	824,918	
VERMILION	IL	3,292,172	0	3,292,172	LYNCHBURG			
RICHLAND	SC	2,413,249	5	2,413,254	CITY	VA	796,574	
LOUDON	ΤN	2,115,017	3	2,115,020	MARSHALL	WV	722,034	
HARRIS	ΤХ	1,892,573	22,544	1,915,117	DYER	TN	705,411	
CATAWBA	NC	1,861,454	197	1,861,651	COOK	IL	667,602	
DICKSON	ΤN	1,782,322	0	1,782,322	WICHITA	ТΧ	645,702	
SHELBY	ΤN	1,729,098	16	1,729,114	KOSCIUSKO	IN	632,594	
ALCORN	MS	1,458,743	0	1,458,743	DALLAS	ТΧ	597,114	
MISSISSIPPI	AR	1,355,911	256	1,356,167	ASCENSION	LA	585,890	
JEFFERSON	KY	1,303,786	9,371	1,313,157	HENRY	VA	578,829	
SHAWNEE	KS	1,281,839	0	1,281,839	COLUMBIA	GA	575,481	
SIMPSON	KY	1,240,434	0	1,240,434	IBERVILLE	LA	570,770	
HENRICO	VA	1,207,298	5	1,207,303	LOS ANGELES	CA	567,713	
ERIE	NY	1,139,621	572	1,140,193	MADISON	IL	563,702	
JOHNSON	IN	1,031,125	0	1,031,125	SPARTANBURG	SC	548,642	
CHESTER	PA	1,014,135	8	1,014,143	EAST BATON ROUGE	LA	541,643	
GLOUCESTER	NJ	922,173	98	922,270	WAYNE	MI	535,421	
DODGE	WI	914,200	0	914,200	SUMNER	TN	519,576	
OSAGE	ОК	914,084	0	914,084	CALDWELL	NC	521,056	
JEFFERSON	ΤХ	901,589	1,429	903,018	BUCKS	PA	515,653	
MIAMI-DADE	FL	897,425	0	897,425	LANCASTER	PA	505,629	
MAURY	ΤN	885,676	164	885,840	MARION	IL	476,236	
COLES	IL	880,158	0	880,158	ELKHART	IN	472,190	
OGLE	IL	847,708	0	847,708			,	

Table C.2.2 Top 50 U.S. Counties for Developmental Toxicant Releases, 2000 (pounds)

County	State	Air	Water	Total	County	State	Air	Water	Total
HAMBLEN	ΤN	16,959,784	750	16,960,534	BEDFORD	VA	167,000	0	167,00
MOBILE	AL	11,319,808	1,410	11,321,218	ST CHARLES	LA	139,705	1,793	141,49
VERMILION	IL	3,264,587	0	3,264,587	ALLEGHENY	PA	137,413	2,318	139,73
LOUDON	ΤN	2,115,010	3	2,115,013	IRON	МО	134,932	4,340	139,27
MISSISSIPPI	AR	1,317,363	256	1,317,619	LORAIN	ОН	130,287	2,801	133,08
SHAWNEE	KS	1,023,140	0	1,023,140	JEFFERSON	AL	129,945	570	130,51
HARRIS	ΤХ	983,950	2,723	986,673	CALHOUN	ТΧ	121,068	75	121,14
MAURY	ΤN	841,119	164	841,283	CALCASIEU	LA	116,852	45	116,89
ERIE	NY	768,964	529	769,493	HENDRY	FL	113,460	0	113,46
MARSHALL	WV	658,954	69	659,023	BROOKE	WV	111,140	21	111,16
WASHINGTON	GA	430,800	0	430,800	WAYNE	MI	108,828	421	109,24
GRANT	KS	420,000	0	420,000	DAVIDSON	TN	104,245	1,794	106,03
CRAWFORD	WI	381,000	0	381,000	EVANGELINE	LA	97,171	0	97,17
BRAZORIA	ТΧ	373,025	66	373,091	СООК	IL	92,182	293	92,47
MADISON	IL	342,341	443	342,784	WEST BATON				
HAMPTON	SC	325,300	0	325,300	ROUGE	LA	89,879	3	89,88
JEFFERSON	МО	317,405	293	317,698	EAST BATON ROUGE	LA	87,680	477	88,15
PALM BEACH	FL	314,220	0	314,220	WASHINGTON	PA	85,485	31	85,51
GRAY	ТΧ	284,890	0	284,890	MONTGOMERY	KY	85,220	0	85,22
ASCENSION	LA	270,496	786	271,282	COSHOCTON	ОН	84,735	7	84,74
GALVESTON	ТΧ	247,431	19	247,450	LAKE	IN	77,768	3,568	81,33
GLOUCESTER	NJ	226,705	57	226,762	IBERVILLE	LA	74,469	121	74,59
JEFFERSON	ТΧ	200,173	943	201,116	CUYAHOGA	ОН	73,357	749	74,10
ST MARY	LA	186,777	0	186,777	WOOD	ОН	71,482	0	71,48
NUECES	ТΧ	181,031	139	181,170	SALT LAKE	UT	68,175	1,265	69,44
HUTCHINSON	ТΧ	167,889	855	168,744					

Table C.2.3 Top 50 U.S. Counties for Reproductive Toxicant Releases, 2000 (pounds)

-

County	State	Air	Water	Total	County	State	Air	Water	Total
TOOELE	UT	42,159,216	0	42,159,216	FLOYD	GA	4,365,308	29,388	4,394,69
HARRIS	ΤХ	18,430,921	371,343	18,802,264	ORANGE	тх	4,171,535	43,522	4,215,05
HAMBLEN	TN	18,467,033	13,480	18,480,513	RICHLAND	SC	4,120,467	79,890	4,200,35
ASCENSION	LA	16,877,660	250,571	17,128,231	GEORGETOWN	SC	4,031,379	39,875	4,071,25
MOBILE	AL	13,268,294	173,754	13,442,048	MORGAN	AL	3,962,236	97,404	4,059,64
JEFFERSON	тх	10,492,523	108,900	10,601,423	ALLEGHANY	VA	3,857,772	22,390	3,880,16
EAST BATON					HAMPTON	SC	3,873,306	0	3,873,30
ROUGE	LA	8,251,701	217,882	8,469,583	RICHMOND	GA	3,619,364	252,607	3,871,97
JEFFERSON	KY	8,100,779	19,398	8,120,177	COWLITZ	WA	3,747,367	109,019	3,856,38
SHELBY	TN	8,019,277	9,618	8,028,895	ST JAMES	LA	3,752,455	53,582	3,806,03
ASHTABULA	OH	7,300,941	4,025	7,304,966	ERIE	PA	3,772,748	520	3,773,26
LOS ANGELES	CA	7,005,252	91,925	7,097,177	NASSAU	FL	3,634,433	89,880	3,724,31
HOPEWELL CITY	VA	6,795,417	72,725	6,868,142	OUACHITA	AR	3,668,494	28,403	3,696,89
СООК	IL	6,287,437	7,425	6,294,862	LICKING	ОН	3,618,120	0	3,618,12
GALVESTON	тх	6,042,293	82,716	6,125,009	JEFFERSON	AL	3,554,839	11,469	3,566,30
ELKHART	IN	6,075,703	15	6,075,718	HARRISON	тх	3,551,061	5,435	3,556,49
VERMILION	IL	5,809,119	7,020	5,816,139	MONROE	MI	3,455,834	10,196	3,466,03
WAYNE	MI	5,165,672	36,823	5,202,495	DE SOTO	LA	3,378,231	67,396	3,445,62
ALLEN	ОН	4,861,953	9,215	4,871,168	ARECIBO	PR	3,445,380	0	3,445,38
CALCASIEU	LA	4,574,471	262,697	4,837,168	CHATHAM	GA	3,398,435	46,507	3,444,94
BRAZORIA	тх	4,693,155	134,457	4,827,612	LEE	MS	3,408,078	0	3,408,07
WASHINGTON	ОН	4,247,144	554,537	4,801,681	LINN	OR	3,285,373	78,692	3,364,06
OAKLAND	MI	4,729,371	113	4,729,484	ROGERS	ОК	3,328,740	6,625	3,335,36
MACON	IL	4,637,685	32	4,637,717	SULLIVAN	TN	3,016,018	274,023	3,290,04
HUMPHREYS	TN	4,030,433	449,102	4,479,535	MISSOULA	MT	3,233,778	37,211	3,270,98
WOOD	WI	4,301,593	136,416	4,438,008					

Table C.2.4 Top 50 U.S. Counties for Suspected Neurological Toxicant Releases, 2000 (pounds)

	0 1 1			.	
County	State	Air Emissions	County	State	Air Emission
TOOELE	UT	43,949,102	WAYNE	MI	9,186,193
PERSON	NC	28,808,652	GALLIA	ОН	9,070,416
ARMSTRONG	PA	21,854,560	SHELBY	TN	9,065,212
ESCAMBIA	FL	18,824,444	GREENE	PA	8,821,612
ADAMS	ОН	18,412,745	MUHLENBERG	KY	8,469,805
BARTOW	GA	17,835,545	HAMILTON	ОН	8,403,221
HARRIS	ТХ	17,816,017	CITRUS	FL	8,319,068
CATAWBA	NC	16,919,941	MONROE	GA	8,212,763
ASCENSION	LA	16,748,004	EAST BATON ROUGE	LA	8,071,700
JEFFERSON	ОН	16,542,003	MONONGALIA	WV	7,978,712
HUMPHREYS	TN	16,383,097	COSHOCTON	ОН	7,852,091
MARSHALL	WV	15,065,624	PUTNAM	GA	7,736,707
PUTNAM	WV	14,705,309	соок	IL	7,731,541
MONROE	MI	13,778,579	RICHLAND	SC	7,673,553
ANNE ARUNDEL	MD	12,648,885	GIBSON	IN	7,469,506
WASHINGTON	ОН	12,483,275	CHARLES	MD	7,343,707
HILLSBOROUGH	FL	11,629,242	HOPEWELL CITY	VA	7,139,728
STOKES	NC	11,364,373	LOS ANGELES	CA	7,026,180
MASON	WV	11,286,999	MOBILE	AL	6,953,225
HARRISON	MS	10,906,883	CARROLL	KY	6,900,323
JEFFERSON	KY	10,303,894	YORK	PA	6,856,902
GASTON	NC	9,992,871	COLBERT	AL	6,682,980
JEFFERSON	ТХ	9,657,819	BAY	FL	6,604,921
OTTAWA	МІ	9,564,851	CLERMONT	ОН	6,515,264
GREENE	AL	9,535,035	GALVESTON	ТХ	6,243,285

Table C.2.5 Top 50 U.S. Counties for Suspected Respiratory Toxicant Releases, 2000 (pounds)

County	State	Air	Water	Total	County	State	Air	Water	
CARROLL	GA	965	0	965	SNOHOMISH	WA	0	24	
IBERVILLE	LA	11	829	840	ANNE ARUNDEL	MD	21	0	
MORGAN	AL	807	0	807	LEWIS	WA	20	0	
BRAZORIA	ТΧ	141	562	703	YAMHILL	OR	0	19	
TOOELE	UT	642	0	642	HUMPHREYS	TN	5	14	
DODGE	NE	429	0	429	TUSCALOOSA	AL	0	19	
COMAL	ТΧ	147	0	147	CASS	IN	19	0	
GRENADA	MS	0	117	118	PORTER	IN	18	0	
PERRY	IN	107	0	107	SEDGWICK	KS	18	0	
ALLEGHENY	PA	106	0	106	NEW CASTLE	DE	3	14	
SAN PATRICIO	ТΧ	100	2	101	BALTIMORE CIT	Y MD	0	16	
HARRIS	ТΧ	61	36	97	LITTLE RIVER	AR	13	2	
CALCASIEU	LA	7	76	82	ROSEBUD	МТ	14	0	
RICHMOND CITY	VA	80	0	80	MADISON	IL	14	0	
ORANGEBURG	SC	75	0	75	NORTHAMPTON	PA	14	0	
EAST BATON ROUGE	LA	64	3	67	LAKE	IN	14	0	
CARTER	OK	56	0	56	HANCOCK	KY	9	5	
ESCAMBIA	AL	1	52	54	ALLEN	KS	13	0	
TYLER	WV	51	0	51	PIERCE	WA	12	2	
KEMPER	MS	0	50	50	DUBUQUE	IA	13	0	
ST CLAIR	AL	48	0	48	LAWRENCE	SD	0	13	
EDGECOMBE	NC	46	0	46	HILLSBOROUGH	I FL	12	0	
MONTGOMERY	AL	0	45	45	SAN BERNARDINO	CA	12	0	
LA CROSSE	WI	28	0	28	MASSAC	IL	12	0	
RAPIDES	LA	1	24	25	MOBILE	AL	11	0	

Table C.2.6 Top 50 U.S. Counties for Dioxin Releases, 2000 (grams)

C.3 RELEASES BY FACILITY

Table C.3.1 Top 50 Facilities for Cancer-Causing Chemical Releases, 2000 (pounds)

Facility	City	State	Industry	Air	Water	Total
CARPENTER CO. TUPELO DIV.	VERONA	MS	Plastics foam products	1,929,108	0	1,929,108
FOAMEX L.P.	CORRY	PA	Plastics foam products	1,779,547	0	1,779,547
ABBOTT HEALTH PRODS. INC.	BARCELONETA	PR	Pharmaceutical preparations	1,322,387	0	1,322,387
EASTMAN KODAK CO. KODAK PARK	ROCHESTER	NY	Photographic equipment and supplies	1,308,713	8,933	1,317,646
FOAMEX INTL. INC.	MILAN	TN	Plastics foam products	1,306,181	0	1,306,181
3V INC.	GEORGETOWN	SC	Industrial organic chemicals, nec	1,133,346	0	1,133,346
CARPENTER CO. ELKHART DIV.	ELKHART	IN	Plastics foam products	1,113,538	0	1,113,538
GFC FOAM L.L.C.	WEST HAZLETON	PA	Plastics foam products	1,078,441	0	1,078,441
VITAFOAM INC.	TUPELO	MS	Plastics foam products	1,056,116	0	1,056,116
FLEXIBLE FOAM PRODS. INC.	SPENCERVILLE	ОН	Plastics foam products	1,020,618	0	1,020,618
FOAMEX L.P.	MORRISTOWN	TN	Plastics foam products	792,259	0	792,259
U.S. SUGAR CORP., BRYANT MILL	BRYANT	FL	Raw cane sugar	791,520	0	791,520
ORMET PRIMARY ALUMINUM CORP.	HANNIBAL	ОН	Primary aluminum	763,500	0	763,500
CARPENTER CO.	LATHROP	CA	Plastics foam products	711,095	0	711,095
FLEXIBLE FOAM PRODS.	ELKHART	IN	Plastics foam products	686,133	0	686,133
FOAMEX L.P.	ELKHART	IN	Plastics foam products	684,255	0	684,255
FLEXIBLE FOAM PRODS. INC.	MIAMI	FL	Plastics foam products	665,504	0	665,504
WEYERHAEUSER CO.	LONGVIEW	WA	Paper mills	621,509	12,836	634,345
FOAMEX L.P.	ORLANDO	FL	Plastics foam products	591,884	0	591,884
DARAMIC INC.	CORYDON	IN	Plastics products, nec	579,495	0	579,495
DDE LOUISVILLE	LOUISVILLE	KY	Synthetic rubber	579,431	0	579,431
NU-FOAM PRODS. INC.	CHATTANOOGA	TN	Plastics foam products	551,826	0	551,826
DONOHUE INDS. INC. LUFKIN MILL	LUFKIN	тх	Paper mills	488,619	8,983	497,602
PACTIV CORP.	WINCHESTER	VA	Plastics foam products	436,000	0,903	436,000
NO-SAG FOAM PRODS, CORP. FOAM OPS.	WEST CHICAGO	IL VA	Plastics foam products	430,000	0	432,423
ALBEMARLE CORP.	ORANGEBURG	SC	·	432,423	6,518	432,423
MPI INC.	COLDWATER	MS	Industrial organic chemicals, nec		0,518	420,905
DUPONT DOW ELASTOMERS L.L.C.	COLDWATER	IVIO	Plastics foam products	419,457	0	419,457
PONTCHARTRAIN SITE	LA PLACE	LA	Synthetic rubber	407,294	0	407,294
GEORGIA-PACIFIC CORP.	BIG ISLAND	VA	Pulp mills	399,400	1,100	400,500
FRANKE CONTRACT GROUP	FAYETTEVILLE	TN	Service industry machinery, nec	396,553	0	396,553
DOW CHEMICAL CO. FREEPORT	FREEPORT	ТХ	Alkalies and chlorine	387,356	8,540	395,896
DOW CHEMICAL CO. RIVERSIDE SITE	PEVELY	MO	Plastics foam products	390,000	0	390,000
SCHERING-PLOUGH PRODS. L.L.C.	LAS PIEDRAS	PR	Pharmaceutical preparations	386,366	0	386,366
POPE & TALBOT INC. HALSEY PULP MILL	HALSEY	OR	Pulp mills	376,213	1,257	377,470
FOAMEX L.P.	CORNELIUS	NC	Plastics foam products	374,894	0	374,894
GEORGIA-PACIFIC CORP.	PALATKA	FL	Pulp mills	364,633	5,229	369,862
VITAFOAM INC. PLEASANT GARDEN PLANT	GREENSBORO	NC	Plastics foam products	355,696	0	355,696
U.S. SUGAR CORP. CLEWISTON MILL	CLEWISTON	FL	Raw cane sugar	355,480	0	355,480
FUTURE FOAM INC.	MIDDLETON	WI	Plastics foam products	350,964	0	350,964
EQUISTAR CHEMICALS L.P.	CHANNELVIEW	тх	Industrial organic chemicals, nec	348,511	13	348,524
WEYERHAEUSER CO.	SPRINGFIELD	OR	Paperboard mills	347,275	750	348,024
PLUM CREEK MDF INC.	COLUMBIA FALL	МТ	Reconstituted wood products	347,250	0	347,250
UNION CARBIDE CORP. SEADRIFT PLANT	SEADRIFT	тх	Industrial organic chemicals, nec	339,795	2,692	342,487
CLINTON LABS.	CLINTON	IN	Medicinals and botanicals	338,775	270	339,045
BOEING CO. WICHITA DIV.	WICHITA	KS	Aircraft parts and equipment, nec	334,955	510	335,465
PHARMACIA & UPJOHN CARIBE INC.	ARECIBO	PR	Pharmaceutical preparations	329,532	0	329,532
AMERICAN & EFIRD INC. PLANTS 05 13 & 15	MOUNT HOLLY	NC	Thread mills	328,228	0	328,228
VITAFOAM INC.	HIGH POINT	NC	Plastics foam products	317,294	0	317,294
DOW CHEMICAL USA HANGING ROCK PLANT	IRONTON	ОН	Plastics foam products	316,764	0	316,764
	MONCURE	NC	Reconstituted wood products	308,489	341	308,830

Table C.3.2 Top 50 Facilities for Developmental Toxicant Releases, 2	000 (pounds)
--	--------------

Facility	City	State	Industry	Air	Water	Total
LENZING FIBERS CORP.	LOWLAND	TN	Cellulosic manmade fibers	16,959,799	750	16,960,549
ACORDIS CELLULOSIC FIBERS INC.	AXIS	AL	Cellulosic manmade fibers	11,257,000	980	11,257,980
DEVRO-TEEPAK	DANVILLE	IL	Plastics products, nec	3,229,146	0	3,229,146
INTERTAPE POLYMER GROUP COLUMBIA DIV.	COLUMBIA	SC	Paper coated and laminated, nec	2,404,000	0	2,404,000
VISKASE CORP.	LOUDON	TN	Plastics products, nec	2,115,000	0	2,115,000
QUEBECOR WORLD	DICKSON	TN	Commercial printing, gravure	1,767,732	0	1,767,732
SHURTAPE TECHS. INC. HICKORY TAPE PLANT	HICKORY	NC	Paper coated and laminated, nec	1,661,498	0	1,661,498
QUEBECOR WORLD CORINTH	CORINTH	MS	Commercial printing, gravure	1,430,126	0	1,430,126
QP MEMPHIS CORP.	MEMPHIS	TN	Commercial printing, gravure	1,420,632	0	1,420,632
VISKASE CORP.	OSCEOLA	AR	Plastics products, nec	1,315,000	250	1,315,250
UCB FILMS INC.	TECUMSEH	KS	Paper coated + laminated, packaging	1,281,773	0	1,281,773
QUEBECOR PRINTING FRANKLIN	FRANKLIN	KY	Commercial printing, gravure	1,212,000	0	1,212,000
QUEBECOR WORLD RICHMOND INC.	RICHMOND	VA	Commercial printing, gravure	1,204,862	0	1,204,862
SONOCO FLEXIBLE PACKAGING	EDINBURGH	IN	Paper coated + laminated, packaging	1,000,310	0	1,000,310
QUEBECOR WORLD ATGLEN DIV.	ATGLEN	PA	Commercial printing, gravure	935,451	0	935,451
BAKER PETROLITE CORP.	BARNSDALL	ОК	Industrial organic chemicals, nec	911,700	0	911,700
AMERICAN SYNTHETIC RUBBER CO. L.L.C.	LOUISVILLE	KY	Synthetic rubber	910,034	0	910,034
QUAD/GRAPHICS INC.	LOMIRA	WI	Commercial printing, lithographic	904,200	0	904,200
R. R. DONNELLEY & SONS CO.	MATTOON	IL		868,880	0	868,880
NAILITE INTL. INC.	MATIOON	FL	Commercial printing, lithographic	853,400	0	853,400
	MOUNT MORRIS	IL	Plastics products, nec		0	
QUEBECOR WORLD MT. MORRIS INC.			Commercial printing, lithographic	840,996		840,996
		TN	Plastics products, nec	836,367	164	836,531
	MARYSVILLE	MI	Paper coated + laminated, packaging	829,490	0	829,490
EAGLE POINT COGENERATION PTNR. (EPCP)	WESTVILLE	NJ	Electric services	810,231	0	810,231
R. R. DONNELLEY PRINTING CO.	LYNCHBURG	VA	Commercial printing, gravure	756,000	0	756,000
3M TONAWANDA	TONAWANDA	NY	Plastics materials and resins	740,000	0	740,000
QUEBECOR WORLD DYERSBURG DIV.	DYERSBURG	TN	Commercial printing, lithographic	705,411	0	705,411
COLUMBIAN CHEMICALS CO.	PROCTOR	WV	Carbon black	650,000	0	650,000
TEXAS RECREATION CORP.	WICHITA FALLS	ΤX	Plastics foam products	638,894	0	638,894
HERCULES INC.	HATTIESBURG	MS	Gum and wood chemicals	632,455	0	632,455
QUEBECOR WORLD (USA) INC.	EVANS	GA	Commercial printing, gravure	575,226	0	575,226
EXXONMOBIL OIL BEAUMONT REFY.	BEAUMONT	TX	Petroleum refining	548,211	0	548,211
R. R. DONNELLEY & SONS CO.	WARSAW	IN	Commercial printing, gravure	532,600	30	532,630
3M CO.	BRISTOL	PA	Paper coated and laminated, nec	493,440	0	493,440
R. R. DONNELLEY & SONS CO.	GALLATIN	TN	Commercial printing, gravure	468,673	0	468,673
INTERNATIONAL PAPER	HAMPTON	SC	Laminated plastics plate + sheet	467,471	0	467,471
QUEBECOR WORLD SALEM	0.11.514			151 100		454.400
DIV. SALEM GRAVURE	SALEM	IL 	Commercial printing, lithographic	454,100	0	454,100
TOSCO WOOD RIVER REFY.	ROXANA	IL.	Petroleum refining	449,010	0	449,010
BURGESS PIGMENT CO.	SANDERSVILLE	GA	Minerals, ground or treated	430,800	0	430,800
NOVARTIS CROP PROTECTION INC. ST. GABRIEL FACILITY	SAINT GABRIEL	LA	Agricultural chemicals, nec	428,790	18	428,808
HOLLISTON MILLS INC.	CHURCH HILL	TN	Coated fabrics, not rubberized	420,508	0	420,508
COLUMBIAN CHEMICALS CO.	ULYSSES	KS	Carbon black	420,001	0	420,001
3M PRAIRIE DU CHIEN BLDG. 1	PRAIRIE DU CHIEN	wi	Plastics materials and resins	381,000	0	381,000
QUEBECOR WORLD DALLAS INC.	FARMERS BRANC	тх	Commercial printing, gravure	369,593	0	369,593
TESA TAPE INC.	MIDDLETOWN	NY	Paper coated and laminated, nec	368,000	0	368,000
R. R. DONNELLEY PRINTING CO. L.P.		IA				350,489
	DES MOINES		Commercial printing, lithographic	350,489	0	
U.S. SUGAR CORP., BRYANT MILL	BRYANT	FL	Raw cane sugar	344,220	0	344,220
	MORRISTOWN	TN	Fabricated rubber products, nec	341,200	0	341,200
DAY INTL. DAVID M FACILITY	LONGWOOD	FL	Fabricated rubber products, nec	340,135	0	340,135
GLOBE MFG. CORP.	FALL RIVER	MA	Organic fibers, noncellulosic	335,720	0	335,720

Table C.3.3 Top 50 Facilities for Reproductive	e Toxicant Releases, 2000 (pounds)
--	------------------------------------

Facility	City	State	Industry	Air	Water	Total
LENZING FIBERS CORP.	LOWLAND	TN	Cellulosic manmade fibers	16,959,784	750	16,960,534
ACORDIS CELLULOSIC FIBERS INC.	AXIS	AL	Cellulosic manmade fibers	11,257,000	980	11,257,980
DEVRO-TEEPAK	DANVILLE	IL	Plastics products, nec	3,229,146	0	3,229,146
VISKASE CORP.	LOUDON	TN	Plastics products, nec	2,115,000	0	2,115,000
VISKASE CORP.	OSCEOLA	AR	Plastics products, nec	1,315,000	250	1,315,250
UCB FILMS INC.	TECUMSEH	KS	Paper coated + laminated, packaging	1,023,140	0	1,023,140
SPONTEX INC.	COLUMBIA	TN	Plastics products, nec	836,367	164	836,531
3M TONAWANDA	TONAWANDA	NY	Plastics materials and resins	740,000	0	740,000
COLUMBIAN CHEMICALS CO.	PROCTOR	WV	Carbon black	650,000	0	650,000
BURGESS PIGMENT CO.	SANDERSVILLE	GA	Minerals, ground or treated	430,800	0	430,800
COLUMBIAN CHEMICALS CO.	ULYSSES	KS	Carbon black	420,000	0	420,000
3M PRAIRIE DU CHIEN BLDG. 1	PRAIRIE DU CHIEN	WI	Plastics materials and resins	381,000	0	381,000
INTERNATIONAL PAPER	HAMPTON	SC	Laminated plastics plate + sheet	325,300	0	325,300
U.S. SUGAR CORP., BRYANT MILL	BRYANT	FL	Raw cane sugar	314,220	0	314,220
TOSCO WOOD RIVER REFY.	ROXANA	IL	Petroleum refining	296,002	0	296,002
CABOT CORP. PAMPA PLANT	PAMPA	⊺∟ TX	Carbon black	290,002	0	290,002
DOE RUN CO. HERCULANEUM SMELTER	HERCULANEUM	MO	Primary nonferrous metals, nec	284,890 284,390	293	284,683
EAGLE POINT COGENERATION PTNR. (EPCP)	WESTVILLE	NJ	Electric services		293	192,912
DOW CHEMICAL CO. FREEPORT	FREEPORT	TX	Alkalies and chlorine	192,912	66	
SHELL CHEMICAL CO. DEER PARK			Plastics materials and resins	174,578	00	174,64
	DEER PARK	TX		170,000	0	170,000
GEORGIA-PACIFIC CORP.	BIG ISLAND	VA	Pulp mills	167,000	0	167,000
BORDEN CHEMICALS & PLASTICS OPERATING L.P.	GEISMAR	LA	Plastics materials and resins	127,011	0	127,01
NYLONGE CO.	ELYRIA	ОН	Plastics products, nec	127,000	0	127,000
CABOT CORP. CANAL PLANT	FRANKLIN	LA	Carbon black	121,510	0	121,510
LYONDELL CHEMICAL CO.	CHANNELVIEW	ТХ	Cyclic crudes and intermediates	114,270	38	114,308
U.S. SUGAR CORP. CLEWISTON MILL	CLEWISTON	FL	Raw cane sugar	113,460	0	113,460
UNION CARBIDE CORP. SEADRIFT PLANT	SEADRIFT	TX	Industrial organic chemicals, nec	112,442	75	112,51
BP AMOCO TEXAS CITY BUSINESS UNIT	TEXAS CITY	ТХ	Petroleum refining	108,000	0	108,00
ENGINEERED CARBONS INC. BORGER CARBON BLACK PLANT	BORGER	тх	Carbon black	106,501	0	106,50
		ТХ				
LYONDELL-CITGO REFINING L.P.	HOUSTON		Petroleum refining	104,541	1,833	106,37
DU PONT OLD HICKORY PLANT WHEELING-PITTSBURGH STEEL CORP.	OLD HICKORY	TN	Industrial organic chemicals, nec	103,303	1,790	105,09
STEUBENVILLE EAST	FOLLANSBEE	WV	Blast furnaces and steel mills	102,700	19	102,71
CABOT CORP. VILLE PLATTE PLANT	VILLE PLATTE	LA	Carbon black	97,171	0	97,17
EQUISTAR CHEMICALS L.P.	ALVIN	ТХ	Industrial organic chemicals, nec	93,200	0	93,20
SID RICHARDSON CARBON CO.	ADDIS	LA	Carbon black	85,270	0	85,27
COOPER TIRE & RUBBER CO.	MOUNT STERLIN	KY	Rubber + plastics hose + belting	85,220	0	85,22
FLEXSYS AMERICA L.P.	MONONGAHELA	PA	Industrial inorganic chemicals, nec	83,398	29	83,42
STONE CONTAINER CORP.	COSHOCTON	ОН	Paperboard mills	83,130	0	83,13
HUNTSMAN CORP. C4/O&O PLANT	PORT NECHES	ТХ	Industrial organic chemicals, nec	80,969	0	80,96
SHELL CHEMICAL L.P.	GEISMAR	LA	Industrial organic chemicals, nec	72,377	780	73,15
COOPER STANDARD AUTOMOTIVE	BOWLING GREEN	OH	Rubber + plastics hose + belting	71,250	0	71,25
SHELL NORCO CHEMICAL PLANT EAST SITE	NORCO	LA	Industrial organic chemicals, nec	70,000	0	70,00
EXXONMOBIL REFINING & SUPPLY BAYTOWN REFY.	BAYTOWN	тх	Petroleum refining	61,881	143	62,02
EQUISTAR CHEMICALS L.P.	CHANNELVIEW	тх	Industrial organic chemicals, nec	62,000	0	62,00
GMC POWERTRAIN DEFIANCE	DEFIANCE	ОН	Gray and ductile iron foundries	61,950	11	61,96
PHILLIPS 66 CO.	BORGER	TX	Petroleum refining	61,101	855	61,95
ROHM & HAAS TEXAS INC.	DEER PARK	TX	Industrial organic chemicals, nec	61,421	0	61,42
FORD MOTOR CO. CLEVELAND CASTING	BROOK PARK	ОН	Gray and ductile iron foundries	60,000	0	60,00
BETHLEHEM STEEL CORP. BURNS HARBOR DIV.	BURNS HARBOR	IN	Blast furnaces and steel mills	59,250	0	59,25
	MAGNA	UT	Primary copper	57,905	500	58,40

Table C.3.4 Top 50 Facilities for Suspecte	d Neurological Toxicant Releases, 2000
--	--

Facility	City	State	Industry	Air	Water	Total
MAGNESIUM CORP. OF AMERICA	ROWLEY	UT	Primary nonferrous metals, nec	42,150,000	0	42,150,000
LENZING FIBERS CORP.	LOWLAND	TN	Cellulosic manmade fibers	17,004,727	13,480	17,018,207
ACORDIS CELLULOSIC FIBERS INC.	AXIS	AL	Cellulosic manmade fibers	11,257,000	980	11,257,980
CF INDS. INC.	DONALDSONVILLE	LA	Nitrogenous fertilizers	5,353,530	48,600	5,402,130
MILLENNIUM CHEMICALS ASHTABULA PLANT 2	ASHTABULA	ОН	Inorganic pigments	5,002,217	0	5,002,217
HONEYWELL INTL. INC. HOPEWELL PLANT	HOPEWELL	VA	Industrial organic chemicals, nec	4,590,710	69,865	4,660,575
INLAND PAPERBOARD & PACKAGING INC.	ROME	GA	Pulp mills	3,914,006	29,238	3,943,243
INTERNATIONAL PAPER	HAMPTON	SC	Laminated plastics plate + sheet	3,727,668	0	3,727,668
BP AMOCO TEXAS CITY BUSINESS UNIT	TEXAS CITY	тх	Petroleum refining	3,671,158	39,722	3,710,880
AMERIPOL SYNPOL CORP.	PORT NECHES	тх	Synthetic rubber	3,699,356	0	3,699,356
INTERNATIONAL PAPER CAMDEN MILL	CAMDEN	AR	Pulp mills	3,668,494	28,403	3,696,897
WESTVACO OF VIRGINIA. INC.	COVINGTON	VA	Paperboard mills	3,556,111	22,389	3,578,500
PCS NITROGEN FERTILIZER L.P.	GEISMAR	LA	Nitrogenous fertilizers	3,512,285	54,099	3,566,384
DEVRO-TEEPAK	DANVILLE	IL	Plastics products, nec	3,399,483	0	3,399,483
IMC PHOSPHATES MP INC. FAUSTINA PLANT	SAINT JAMES	LA	Nitrogenous fertilizers	3,323,126	42,217	3,365,343
INTERNATIONAL PAPER	MANSFIELD	LA	Paperboard mills	3,272,351	46,750	3,319,101
PCS NITROGEN FERTILIZER L.P.	MILLINGTON	TN	Nitrogenous fertilizers	3,227,075	5,000	3,232,075
TRIAD NITROGEN L.L.C.	DONALDSONVILL	LA	Nitrogenous fertilizers	3,133,801	49,762	3,183,563
PCS NITROGEN OF OHIO L.P.	LIMA	ОН	Nitrogenous fertilizers	3,141,605	8,625	3,150,230
TERRA NITROGEN LTD. L.P.	CLAREMORE	OK	Nitrogenous fertilizers	3,106,500	6,550	3,113,050
ERAMET MARIETTA INC.	MARIETTA	ОН	Electrometallurgical products	2,550,483	548,000	3,098,483
ROYAL OAK ENTERPRISES INC. ELLSINORE MO.	ELLSINORE	MO	Gum and wood chemicals	3,082,896	0.0,000	3,082,896
STONE CONTAINER CORP.	MISSOULA	MT	Paperboard mills	3,007,854	37,211	3,045,065
PREPA CAMBALACHE COMBUSTION TURBINE PLANT	ARECIBO	PR	Electric services	2,990,951	0	2,990,951
GEORGIA-PACIFIC CORP. PORT HUDSON OPS.	ZACHARY	LA	Pulp mills	2,794,774	144,141	2,938,915
EASTMAN CHEMICAL CO. TX OPS.	LONGVIEW	TX	Industrial organic chemicals, nec	2,926,260	5,336	2,931,596
STORA ENSO N.A. WISCONSIN RAPIDS PULP MILL	WISCONSIN RAPIDS	WI	Pulp mills	2,923,410	1,000	2,924,410
WEYERHAEUSER CO.	VALLIANT	OK	Paperboard mills	2,863,484	35,140	2,898,624
ENGELHARD CORP. ATTAPULGUS OPS.	ATTAPULGUS	GA	Minerals, ground or treated	2,896,418	0	2,896,418
CRAIG IND. LEASED TO ROYAL OAK ENTS.	SUMMERSVILLE	MO	Gum and wood chemicals	2,870,640	0	2,870,640
EASTMAN CHEMICAL CO. TENNESSEE OPS.	KINGSPORT	TN	Cellulosic manmade fibers	2,584,587	224,268	2,808,855
INTERNATIONAL PAPER	RIEGELWOOD	NC	Pulp mills	2,585,562	98,938	2,684,500
INTERNATIONAL PAPER INTERNATIONAL PAPER GEORGETOWN MILL	GEORGETOWN	SC				
	FERNANDINA BEACH	FL	Pulp mills	2,637,225	32,305	2,669,530
JEFFERSON SMURFIT CORP.		FL NC	Paperboard mills	2,567,700	12,007	2,579,707
BLUE RIDGE PAPER PRODS. INC.	CANTON		Paper mills	2,470,871	108,250	2,579,121
WEYERHAEUSER CO.	LONGVIEW	WA	Paper mills	2,478,050	96,397	2,574,447
WESTVACO CORP. PACKAGING RESOURCES GROUP	NORTH CHARLESTON	SC	Pulp mills	2,496,009	27,043	2,523,052
GEORGIA-PACIFIC CORP.	MONTICELLO	MS	Paperboard mills	2,325,350	115,693	2,441,043
PACKAGING CORP. OF AMERICA	COUNCE	TN	Paperboard mills	2,409,934	17,191	2,427,125
GREAT SOUTHERN PAPER CO.	CEDAR SPRINGS	GA	Paperboard mills	2,356,007	65,818	2,421,825
INTERTAPE POLYMER GROUP COLUMBIA DIV.	COLUMBIA	SC	Paper coated and laminated, nec	2,404,000	0	2,404,000
FARMLAND INDS. INC.	ENID	OK	Nitrogenous fertilizers	2,395,010	5,510	2,400,520
CLIMAX MOLYBDENUM CO.	FORT MADISON	IA	Primary nonferrous metals, nec	2,395,000	4,250	2,399,250
TEXAS RECREATION CORP.	WICHITA FALLS	TX	Plastics foam products	2,395,678	4,200	2,395,678
HOLNAM INC. DUNDEE PLANT	DUNDEE	MI	Cement, hydraulic	2,361,792	1,497	2,363,289
DOW CHEMICAL CO. FREEPORT	FREEPORT	TX	Alkalies and chlorine	2,236,144	87,545	2,323,689
INTERNATIONAL PAPER CO.		17		2,200,177	07,070	2,020,000
SAVANNAH COMPLEX	SAVANNAH	GA	Pulp mills	2,291,022	13,230	2,304,252
STONE CONTAINER CORP.	PANAMA CITY	FL	Pulp mills	2,296,933	0	2,296,933
EASTMAN KODAK CO. KODAK PARK	ROCHESTER	NY	Photographic equipment and supplies	2,213,914	81,062	2,294,976
RIVERWOOD INTL. CORP.	WEST MONROE	LA	Pulp mills	2,265,030	3,841	2,268,871

Table C.3.5 Top 50 Facilities for Suspected Respiratory Toxicant Releases, 2000 (pounds)

Facility	City	State	Industry	Air Emissions
MAGNESIUM CORP. OF AMERICA	ROWLEY	UT	Primary nonferrous metals, nec	43,932,000
CP&L ROXBORO STEAM ELECTRIC PLANT	SEMORA	NC	Electric services	19,217,246
RELIANT ENERGIES INC. KEYSTONE POWER PLANT	SHELOCTA	PA	Electric services	18,439,349
BOWEN STEAM ELECTRIC GENERATING PLANT	CARTERSVILLE	GA	Electric services	17,755,948
GULF POWER CO. PLANT CRIST	PENSACOLA	FL	Electric services	16,610,923
DUKE ENERGY MARSHALL STEAM STATION	TERRELL	NC	Electric services	14,546,965
JOHN E. AMOS POWER PLANT	WINFIELD	WV	Electric services	14,526,137
J. M. STUART STATION	MANCHESTER	ОН	Electric services	14,167,140
U.S. TVA JOHNSONVILLE FOSSIL PLANT	NEW JOHNSONVILLE	TN	Electric services	14,012,152
BRANDON SHORES & WAGNER COMPLEX	BALTIMORE	MD	Electric services	12,359,982
DUKE ENERGY BELEWS CREEK STEAM STATION	BELEWS CREEK	NC	Electric services	11,360,090
DETROIT EDISON MONROE POWER PLANT	MONROE	MI	Electric services	10,788,141
MISSISSIPPI POWER CO. PLANT WATSON	GULFPORT	MS	Electric services	9,965,445
AMERICAN ELECTRIC POWER MITCHELL PLANT	MOUNDSVILLE	WV	Electric services	9,721,964
AMERICAN ELECTRIC POWER CARDINAL PLANT	BRILLIANT	ОН	Electric services	9,584,560
ALABAMA POWER CO. PLANT GREENE COUNTY	FORKLAND	AL	Electric services	9,535,035
CP&L MAYO ELECTRIC GENERATING PLANT	ROXBORO	NC	Electric services	9,357,060
ALLEGHENY ENERGY INC. HATFIELD POWER STATION	MASONTOWN	PA	Electric services	8,777,480
TAMPA ELECTRIC CO. GANNON STATION	ТАМРА	FL	Electric services	8,311,883
SCHERER STEAM ELECTRIC GENERATING PLANT	JULIETTE	GA	Electric services	8,212,763
FLORIDA POWER CRYSTAL RIVER ENERGY COMPLEX	CRYSTAL RIVER	FL	Electric services	8,058,058
U.S. TVA PARADISE FOSSIL PLANT	DRAKESBORO	κΥ	Electric services	8,041,845
ALLEGHENY ENERGY INC. FORT MARTIN POWER STATION	MAIDSVILLE	WV	Electric services	7,879,310
AMERICAN ELECTRIC POWER MUSKINGUM RIVER PLANT	BEVERLY	ОН	Electric services	7,794,678
BRANCH STEAM ELECTRIC GENERATING PLANT	MILLEDGEVILLE	GA	Electric services	7,604,488
MORGANTOWN GENERATING STATION	NEWBURG	MD	Electric services	7,342,284
PSI ENERGY GIBSON GENERATING STATION	PRINCETON	IN	Electric services	7,277,778
KYGER CREEK STATION	GALLIPOLIS	OH	Electric services	7,132,568
CG&E MIAMI FORT GENERATING STATION	NORTH BEND	ОН	Electric services	6,883,611
KENTUCKY UTILITIES CO. GHENT STATION	GHENT	KY	Electric services	6,771,001
FIRSTENERGY W.H. SAMMIS PLANT	STRATTON	ОН	Electric services	6,766,550
AMERICAN ELECTRIC POWER CONESVILLE PLANT	CONESVILLE	ОН	Electric services	6,512,898
AMERICAN ELECTRIC POWER CONESVILLE PLANT	NEW HAVEN	WV	Electric services	
	LOUISA	KY	Electric services	6,412,005
BIG SANDY POWER PLANT DUKE ENERGY PLANT ALLEN	BELMONT	NC	Electric services	5,994,399
J. H. CAMPBELL GENERATING PLANT	WEST OLIVE	MI	Electric services	5,985,365
U.S. TVA KINGSTON FOSSIL PLANT		TN		5,689,380
	HARRIMAN		Electric services	5,583,830
CG&E BECKJORD GENERATING STATION	NEW RICHMOND	OH	Electric services	5,543,053
CF INDS. INC.	DONALDSONVILLE	LA	Nitrogenous fertilizers	5,358,440
MT. STORM POWER STATION	MOUNT STORM	WV	Electric services	5,256,113
ST. JOHNS RIVER POWER PARK/NORTHSIDE GENERATING ST		FL	Electric services	5,249,131
U.S. TVA COLBERT FOSSIL PLANT	TUSCUMBIA	AL	Electric services	5,243,804
PP&L MONTOUR STEAM ELECTRIC STATION	DANVILLE	PA	Electric services	5,238,682
AMERICAN ELECTRIC POWER TANNERS CREEK PLANT	LAWRENCEBURG	IN	Electric services	5,051,560
U.S. TVA GALLATIN FOSSIL PLANT	GALLATIN	TN	Electric services	4,936,195
SPURLOCK POWER STATION	MAYSVILLE	KY	Electric services	4,922,879
AMERICAN ELECTRIC POWER KAMMER PLANT	MOUNDSVILLE	WV	Electric services	4,860,875
ALABAMA POWER CO. PLANT BARRY	BUCKS	AL	Electric services	4,835,239
AMEREN CORP. COFFEEN POWER STATION	COFFEEN	IL	Electric services	4,802,505
HONEYWELL INTL. INC. HOPEWELL PLANT	HOPEWELL	VA	Industrial organic chemicals, nec	4,704,525

Table C.3.6 Top 50 Facilities for	Dioxin Releases,	2000 (grams)
-----------------------------------	------------------	--------------

acility	City	State	Industry	Air	Water	Tota
SOUTHWIRE CO.	CARROLLTON	GA	Secondary nonferrous metals	965.0	0.0	965.0
SOLUTIA INC.	DECATUR	AL	Organic fibers, noncellulosic	807.4	0.0	807.4
DOW CHEMICAL CO. LOUISIANA DIV.	PLAQUEMINE	LA	Alkalies and chlorine	2.6	746.0	748.6
DOW CHEMICAL CO. FREEPORT	FREEPORT	тх	Alkalies and chlorine	139.6	562.2	701.9
AGNESIUM CORP. OF AMERICA	ROWLEY	UT	Primary nonferrous metals, nec	623.0	0.0	623.0
CITY OF FREMONT DEPARTMENT OF JTILITIES LON D. WRI	FREMONT	NE	Electric and other services combined	429.0	0.0	429.0
TXI OPS. L.P. HUNTER CEMENT PLANT	NEW BRAUNFELS	TX	Cement, hydraulic	145.5	0.0	145.5
(OPPERS INDS. INC.	GRENADA	MS	Wood preserving	0.0	117.4	117.4
VAUPACA FNDY. INC. PLANT 5	TELL CITY	IN	Gray and ductile iron foundries	106.7	0.0	106.3
BOSWELL OIL CO.	DRAVOSBURG	PA	Petroleum bulk stations + terminals	102.8	0.0	100.
DCCIDENTAL CHEMICAL CORP.	GREGORY	TX		99.7	1.6	102.0
			Industrial organic chemicals, nec			
GEORGIA GULF CHEMICALS & VINYLS L.L.C.	PLAQUEMINE	LA	Industrial organic chemicals, nec	8.5	82.8	91.3
COGENTRIX OF RICHMOND INC.	RICHMOND	VA	Electric services	80.0	0.0	80.0
PPG INDS. INC.	LAKE CHARLES	LA	Alkalies and chlorine	1.3	74.8	76.
HOLNAM INC.	HOLLY HILL	SC	Cement, hydraulic	75.0	0.0	75.0
FORMOSA PLASTICS CORP. LOUISIANA	BATON ROUGE	LA	Plastics materials and resins	61.0	0.0	61.0
IPI PETROLEUM INC.	ARDMORE	OK	Petroleum refining	55.8	0.0	55.
DXY VINYLS L.P. DEER PARK VCM PLANT	DEER PARK	ТΧ	Industrial organic chemicals, nec	51.9	0.0	51.9
ORMET ALUMINUM MILL PRODS. CORP.	FRIENDLY	WV	Secondary nonferrous metals	51.4	0.0	51.
ELECTRIC MILLS WOOD PRESERVING L.L.C.	SCOOBA	MS	Wood preserving	0.0	49.9	49.
NATIONAL CEMENT CO. OF ALABAMA INC.	RAGLAND	AL	Cement, hydraulic	47.5	0.0	47.
COGENTRIX OF ROCKY MOUNT	BATTLEBORO	NC	Electric services	46.0	0.0	46.
KOPPERS INDS. INC.	MONTGOMERY	AL	Wood preserving	0.0	45.4	45.
HUXFORD POLE & TIMBER CO. INC.	HUXFORD	AL	Wood preserving	0.5	43.0	43.
DXY VINYLS L.P DEER PARK C/A	DEER PARK	ТΧ	Alkalies and chlorine	0.0	33.3	33.
NORTHERN STATES POWER CO. NI FRENCH ISLAND	LA CROSSE	WI	Electric and other services combined	28.0	0.0	28.
KIMBERLY-CLARK TISSUE CO.	EVERETT	WA	Pulp mills	0.1	23.6	23.
BRANDON SHORES & WAGNER COMPLEX	BALTIMORE	MD	Electric services	21.0	0.0	21.
RANSALTA CENTRALIA GENERATION / MINING	CENTRALIA	WA	Electric services	20.1	0.0	20.
TAYLOR LUMBER & TREATING INC.	SHERIDAN	OR	Wood preserving	0.0	19.4	19.4
DIS-TRAN WOOD PRODS. INC.	PINEVILLE	LA	Wood preserving	0.0	19.2	10.
SAFETY-KLEEN (ARAGONITE) INC.	ARAGONITE	UT	Refuse systems	19.1	0.0	19.
BROWN WOOD PRESERVING CO. INC.	NORTHPORT	AL	•	0.0	19.0	19.
ESSROC CEMENT CORP.			Wood preserving			
		IN	Cement, hydraulic	18.6	0.0	18.
BETHLEHEM STEEL CORP. BURNS HARBOR DIV.		IN	Blast furnaces and steel mills	18.0	0.0	18.
/ULCAN CHEMICALS /IILLENNIUM INORGANIC CHEMICALS INC.	WICHITA	KS	Alkalies and chlorine	17.2	0.0	17.
AWKINS POINT	BALTIMORE	MD	Inorganic pigments	0.3	16.3	16.
DU PONT JOHNSONVILLE PLANT	NEW JOHNSONVILLE	TN	Inorganic pigments	0.1	14.3	14.
DU PONT EDGE MOOR	EDGEMOOR	DE	Inorganic pigments	0.1	14.0	14.
PP&L MONTANA COLSTRIP STEAM ELECTRIC STATION	COLSTRIP	MT	Electric services	14.0	0.0	14.
CHEMETCO INC.	HARTFORD	IL	Secondary nonferrous metals	14.0	0.0	14.
MONARCH CEMENT CO.	HUMBOLDT	KS	Cement, hydraulic	13.3	0.0	13.
WHEELER LUMBER L.L.C.	WHITEWOOD	SD	Wood preserving	0.0	12.6	12.
IOHN DEERE DUBUQUE WORKS	DUBUQUE	IA	Construction machinery	12.3	0.0	12.
ASH GROVE CEMENT CO.	FOREMAN	AR	Cement, hydraulic	10.7	0.0	10.
SEALED AIR CORP. CRYOVAC DIV.	SIMPSONVILLE	SC	Unsupported plastics film + sheet	10.5	0.0	10.
						10.
						9.
			-			9. 9.
						9.
CASCADE POLE & LUMBER CO. ROQUETTE AMERICA INC. KEOKUK PLANT SOUTHDOWN CALIFORNIA CEMENT L.L.C. ESSROC CEMENT CORP.	TACOMA KEOKUK VICTORVILLE NAZARETH	WA IA CA PA	Wood preserving Wet corn milling Cement, hydraulic Cement, hydraulic	8.6 9.4 9.4 9.3	1.5 0.0 0.0 0.0	

C.4 CUMULATIVE (1987-2000) RELEASES BY STATE

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
ТΧ	242,263,513	2,720,989	244,984,502	1	NJ	37,552,701	1,014,996	38,567,697	29
IN	224,782,783	440,317	225,223,101	2	OR	36,395,603	312,308	36,707,911	30
NY	149,308,822	2,649,520	151,958,342	3	IA	35,955,360	225,086	36,180,446	31
PA	146,602,930	1,324,270	147,927,201	4	ОК	29,127,341	38,524	29,165,866	32
NC	141,714,017	1,183,190	142,897,207	5	ME	16,552,985	647,122	17,200,107	33
ОН	139,645,843	1,152,807	140,798,650	6	MD	16,003,433	350,812	16,354,245	34
IL	137,265,111	284,385	137,549,496	7	UT	15,005,768	56,387	15,062,156	35
MI	107,717,534	699,052	108,416,586	8	NE	13,750,562	67,804	13,818,366	36
CA	96,153,774	11,642,941	107,796,715	9	NH	12,734,015	200,432	12,934,447	37
MS	103,138,501	462,435	103,600,936	10	DE	11,670,813	52,176	11,722,990	38
LA	99,633,664	2,368,590	102,002,254	11	AZ	9,118,060	4,120	9,122,180	39
AL	94,550,984	2,453,765	97,004,749	12	со	8,659,155	15,003	8,674,159	40
GA	92,125,910	796,368	92,922,278	13	MT	7,321,814	28,932	7,350,745	41
TN	87,257,695	1,002,275	88,259,970	14	RI	6,477,561	7,167	6,484,727	42
SC	81,303,219	1,746,662	83,049,881	15	ID	6,113,598	122,947	6,236,545	43
VA	72,793,866	315,810	73,109,676	16	AK	4,713,820	655,467	5,369,287	44
MO	66,119,369	153,317	66,272,686	17	VI	3,781,728	3,561	3,785,289	45
KY	62,297,602	847,429	63,145,032	18	NM	2,193,814	3,543	2,197,357	46
PR	59,853,413	83,554	59,936,967	19	WY	1,286,634	4,382	1,291,016	47
WV	55,038,111	698,646	55,736,758	20	SD	1,267,533	1,831	1,269,364	48
СТ	51,015,011	3,425,439	54,440,451	21	NV	987,203	21,440	1,008,643	49
WI	51,049,402	529,726	51,579,128	22	н	939,430	2,321	941,751	50
KS	50,207,436	37,147	50,244,583	23	ND	814,616	24,425	839,041	51
WA	44,400,184	4,288,084	48,688,268	24	VT	319,673	2,258	321,931	52
FL	47,590,590	233,644	47,824,233	25	GU	23,963	260	24,223	53
MA	39,352,497	725,963	40,078,460	26	AS	2,279	0	2,279	54
MN	39,318,556	519,784	39,838,340	27	MP	1,844	10	1,854	55
AR	39,047,713	374,687	39,422,400	28	DC	8	0	8	56

Table C.4.1 Cancer-Causing Chemical Releases by State, 1987-2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
TN	532,347,219	1,123,762	533,470,981	1	PR	31,379,055	110,635	31,489,690	29
AL	517,742,255	524,267	518,266,522	2	FL	30,795,267	8,009	30,803,276	30
тх	231,058,056	377,891	231,435,947	3	WA	26,837,993	31,411	26,869,404	31
IL	216,157,693	123,114	216,280,807	4	OR	22,320,649	9,880	22,330,529	32
IN	207,078,399	222,905	207,301,304	5	MD	22,136,537	122,620	22,259,157	33
VA	205,237,616	113,731	205,351,347	6	СТ	17,998,617	1,080,464	19,079,081	34
PA	179,200,904	343,628	179,544,533	7	RI	15,807,940	2,833	15,810,773	35
NC	170,592,353	81,877	170,674,230	8	NH	12,275,908	3,429	12,279,337	36
MI	161,641,328	113,617	161,754,945	9	ME	9,081,521	500	9,082,021	37
LA	149,857,403	700,876	150,558,279	10	UT	8,731,611	44,098	8,775,709	38
ОН	147,908,130	269,519	148,177,649	11	VI	7,812,995	3,666	7,816,661	39
NY	118,405,602	254,657	118,660,259	12	со	7,766,138	10,805	7,776,943	4(
SC	114,460,050	224,381	114,684,431	13	AZ	7,159,121	1,567	7,160,688	4
KY	94,993,081	196,846	95,189,927	14	NV	5,727,485	15,325	5,742,810	42
MN	93,295,084	8,760	93,303,844	15	NM	4,948,090	1,959	4,950,049	43
MS	85,660,431	75,917	85,736,348	16	SD	4,398,437	1,251	4,399,688	44
AR	74,026,604	31,252	74,057,855	17	WY	4,012,017	10,004	4,022,021	45
GA	70,036,705	115,092	70,151,796	18	DE	3,864,884	25,549	3,890,432	46
IA	67,317,722	25,786	67,343,508	19	MT	3,632,885	8,778	3,641,662	47
MO	63,689,610	54,390	63,744,000	20	VT	2,727,049	1,348	2,728,397	48
WI	62,478,419	15,990	62,494,409	21	ID	2,385,739	7,152	2,392,891	49
WV	55,557,340	423,281	55,980,620	22	ND	2,206,344	21,279	2,227,623	50
CA	41,213,484	10,504,169	51,717,653	23	н	1,325,986	1,741	1,327,727	51
NJ	50,768,939	308,914	51,077,853	24	AK	1,272,857	2,754	1,275,611	52
KS	50,638,552	23,239	50,661,791	25	GU	46,720	520	47,240	53
MA	46,770,097	17,315	46,787,412	26	MP	8,046	20	8,066	54
NE	42,985,696	65,456	43,051,152	27	AS	5,739	2	5,741	55
OK	38,387,433	13,467	38,400,900	28	DC	8	0	8	56

Table C.4.2 Developmental Toxicant Releases by State, 1987-2000 (pounds)

State	Air	Water	Total	Rank	State	Air	Water	Total	Rank
AL	461,101,141	388,096	461,489,237	1	UT	2,627,279	15,804	2,643,083	29
TN	359,914,719	1,052,707	360,967,426	2	NC	2,516,534	30,727	2,547,261	30
LA	92,525,521	271,874	92,797,395	3	ME	2,104,479	305	2,104,784	31
VA	90,265,300	42,308	90,307,608	4	FL	1,803,395	6,281	1,809,676	32
тх	85,729,585	266,242	85,995,827	5	NH	1,562,304	3,384	1,565,688	33
IL	75,864,640	95,709	75,960,349	6	СТ	1,505,450	13,820	1,519,270	34
IN	41,110,626	156,939	41,267,565	7	МТ	1,501,006	6,408	1,507,414	35
ОН	29,868,337	217,046	30,085,383	8	AZ	1,479,458	1,309	1,480,767	36
PA	29,040,544	224,316	29,264,860	9	NM	1,453,919	2,393	1,456,312	37
AR	26,554,325	27,984	26,582,309	10	DE	1,330,984	18,788	1,349,772	38
NY	21,528,279	171,499	21,699,778	11	MD	1,192,530	112,119	1,304,649	39
WV	20,703,058	237,014	20,940,072	12	WY	1,116,539	3,898	1,120,437	40
KS	19,762,205	12,123	19,774,328	13	NE	720,834	43,808	764,642	41
SC	13,870,717	193,678	14,064,395	14	IA	674,476	42,473	716,949	42
PR	10,320,203	34,066	10,354,269	15	RI	623,249	1,262	624,511	43
GA	9,632,942	16,665	9,649,607	16	со	587,723	9,669	597,392	44
МІ	8,073,683	94,772	8,168,455	17	AK	574,989	1,720	576,709	45
MO	7,945,301	47,029	7,992,330	18	н	521,051	1,647	522,698	46
WI	7,687,451	10,611	7,698,062	19	ND	483,834	17,362	501,196	47
ОК	7,004,824	5,252	7,010,076	20	OR	373,307	4,577	377,884	48
ΚY	5,246,442	74,469	5,320,911	21	ID	201,552	6,572	208,124	49
CA	5,201,504	62,790	5,264,294	22	NV	79,127	1,063	80,190	50
MN	5,120,433	6,218	5,126,651	23	VT	11,457	338	11,795	51
NJ	4,004,345	194,540	4,198,885	24	SD	9,530	40	9,570	52
MS	3,922,713	14,643	3,937,356	25	GU	5,203	260	5,463	53
VI	3,291,494	2,170	3,293,664	26	AS	2,279	0	2,279	54
WA	3,220,563	12,385	3,232,948	27	MP	1,844	10	1,854	55
MA	3,138,457	7,602	3,146,059	28	DC	0	0	0	56

Table C.4.3 Reproductive Toxicant Releases by State, 1987-2000 (pounds)

State	e Air	Water	Total	Rank	State	Air	Water	Total	Rank
тх	1,773,346,111	31,296,933	1,804,643,044	1	NJ	238,804,823	21,082,516	259,887,339	29
LA	1,216,079,958	74,551,216	1,290,631,174	2	OR	229,692,987	4,392,497	234,085,484	30
TN	1,219,662,294	13,501,976	1,233,164,271	3	СТ	173,298,560	32,545,733	205,844,293	31
ОН	1,162,367,003	46,769,900	1,209,136,904	4	MA	185,445,878	1,239,702	186,685,579	32
AL	1,091,722,008	42,586,503	1,134,308,512	5	MD	155,467,369	8,658,149	164,125,518	33
IN	1,015,827,509	17,854,435	1,033,681,944	6	AK	143,880,868	19,625,580	163,506,448	34
UT	1,019,020,849	1,317,587	1,020,338,436	7	NE	151,068,418	2,513,997	153,582,415	35
IL	943,205,916	27,149,651	970,355,568	8	PR	149,346,413	801,012	150,147,425	36
NC	917,682,023	13,975,605	931,657,628	9	ME	112,128,460	7,967,910	120,096,370	37
MI	792,565,683	9,669,007	802,234,690	10	AZ	86,475,114	39,316	86,514,430	38
VA	768,656,107	13,492,508	782,148,615	11	NH	72,209,444	1,747,176	73,956,620	39
CA	689,541,464	89,061,649	778,603,113	12	ID	66,952,572	2,653,091	69,605,663	40
PA	746,361,523	14,774,834	761,136,357	13	со	65,803,937	1,407,266	67,211,203	41
GA	709,444,966	16,327,711	725,772,676	14	DE	60,393,503	3,629,022	64,022,525	42
SC	685,190,292	12,911,678	698,101,969	15	МТ	54,485,628	1,761,463	56,247,090	43
MS	643,971,081	11,422,480	655,393,561	16	RI	48,146,931	675,027	48,821,958	44
NY	567,533,916	14,913,438	582,447,354	17	SD	33,539,084	113,331	33,652,415	45
MO	504,629,627	6,296,583	510,926,210	18	WY	27,178,811	745,059	27,923,870	46
KY	496,202,415	7,948,264	504,150,679	19	ND	27,425,706	494,427	27,920,133	47
FL	464,424,100	15,680,677	480,104,777	20	VI	21,963,390	1,837,418	23,800,808	48
IA	424,054,950	9,939,399	433,994,349	21	NV	18,910,073	70,885	18,980,958	49
AR	420,105,895	13,379,012	433,484,906	22	NM	16,513,174	15,381	16,528,555	50
MN	405,410,361	6,686,715	412,097,076	23	VT	8,886,154	268,754	9,154,908	51
WI	404,201,101	6,633,648	410,834,749	24	н	5,727,689	115,410	5,843,099	52
WA	319,657,905	30,379,548	350,037,453	25	GU	526,394	7,400	533,794	53
OK	319,459,063	3,098,731	322,557,794	26	AS	237,916	12	237,928	54
KS	308,277,164	1,299,496	309,576,660	27	DC	30,048	2,320	32,368	55
WV	272,131,075	19,579,362	291,710,436	28	MP	14,443	45	14,488	56

Table C.4.4 Suspected Neurological Toxicant Releases by State, 1987-2000 (pounds)

State	Air Emissions	Rank	State	Air Emissions	Rank
тх	1,561,384,551	1	NJ	265,857,572	29
ОН	1,325,956,622	2	MD	250,791,228	30
NC	1,197,352,162	3	OR	232,514,579	31
LA	1,133,109,224	4	MA	182,055,717	32
UT	1,087,082,766	5	PR	181,478,727	33
IN	1,059,450,485	6	NE	150,858,460	34
PA	1,001,166,763	7	AK	150,515,577	35
IL	964,536,939	8	ME	143,443,873	36
MI	944,214,410	9	СТ	123,445,578	37
TN	934,320,516	10	AZ	103,859,048	38
GA	888,267,698	11	NH	83,812,664	39
VA	808,923,197	12	DE	81,694,134	40
AL	788,493,365	13	ID	71,767,963	41
SC	741,280,397	14	со	67,432,699	42
NY	669,984,476	15	MT	52,205,756	43
FL	653,924,826	16	RI	42,617,925	44
MS	644,494,905	17	WY	33,119,583	45
KY	606,535,218	18	SD	29,916,846	46
CA	535,867,323	19	NM	27,698,606	47
MO	532,929,071	20	ND	26,504,673	48
WI	461,087,183	21	NV	22,135,342	49
WV	452,172,686	22	VI	20,359,253	50
IA	428,879,606	23	ні	10,625,785	51
MN	398,689,510	24	VT	7,629,346	52
AR	396,835,443	25	GU	730,756	53
ОК	319,755,920	26	DC	307,548	54
WA	308,097,936	27	AS	237,916	55
KS	291,982,714	28	MP	14,443	56

Table C.4.5 Suspected Respiratory Toxicant Releases by State, 1987-2000 (pounds)